Resolution Number for Academic year 2019-20 syllabus

AC/II(18-19).2.RUS10

S.P. Mandali's

Ramnarain Ruia Autonomous College

Syllabus for T. Y. B. Sc. Applied Component

Program: B.Sc.

Course: Applied Component: Electronic Instrumentation , C++ programming & Nanomaterials

(RUSACEI)

(Credit Based Semester and Grading System with effect from the academic year 2019–2020)

COURSE	UNIT	TITLE	Credits	Lect /
CODE				Week
RUSACEI 501		ANOLOG CIRCUITS and		
		NANOMATERIALS-I		
	Ι	Measuring Instruments		
	I	Signal conditioning and Power Supplies	02	04
	=	Analysis Techniques-I		
	IV	Nanomaterials-I		
		Practicals based on above course		
RUSACEI 5P1			02	04
Total			04	

SEMESTER V

Theory

RUIA COLLEGE Explore • Experience • Excel

SEMESTER VI

Theory

Course Code: ANOLOG CIRCUITS AND NANOMATERIALS-I Course Title: RUSACEI501

Learning Objectives:

Upon completion of this course, students would acquire the following knowledge & skills:

- (1) The ability to apply the principles of physics to solve new and unfamiliar problems
- (2) The ability to analyze and interpret quantitative results in the areas of physics
- (3) The ability to use contemporary experimental apparatus and analysis tools to acquire, analyze and interpret scientific data
- (4) The ability to communicate scientific results effectively in presentations or posters
- (5) A comprehensive, quantitative and conceptual understanding of the core areas of physics, including mechanics, optics, thermodynamics, electrostatics, electrodynamics at a level attuned with graduate programs in physics at peer institutions.
- (6) To learn functional nanomaterials and its properties.
- (7) To study the synthesis of various nanomaterials.
- (8) Synthesis and characterization of nanomaterials.
- (9) To learn the application of nanomaterials

COURSE CODE	UNIT	TITLE	Credits	Lect /
	-			Week
RUSACEI 601		C++ PROGRAMING AND NANOMATERIALS-II	G	
F 1		Basic Concepts of Object Oriented Programming in C++-I		
EXDIO	Ð	Programming in C++-II	02	04
		Analysis Techniques-II		
	IV	Nanomaterials-II		
		Practicals based on above course		
RUSACEI 6P1			02	04
Total			04	

Learning Outcomes:

On successful completion of this course, students will be able to:

- a) Understand the basics of Temperature measurements using elements as resistance thermometer, thermocouple Thermistor, their applications
- b) Understand the basics of **Measuring Instruments such as CRO, DMM, Analog meter and** able to perform calculations using them
- c) Understand working of Signal Generation and Signal Conditioning, power supply and demonstrate in experiments.
- d) Demonstrate quantitative problem solving skill in all the topics covered
- e) Understand the functional nanomaterials and its properties.
- f) Synthesis of various nanomaterials.
- g) Analysis of synthesized nanomaterials.
- h) Understand the application of nanomaterials

Detail Syllabus

	RUSACEI501 – ANOLOG CIRCUITS AND NANOMATERIALS-I		
	SEMESTER V		
Course	Title	Credits	
Code			
Unit I	Measuring Instruments: (i) Cathode Ray Oscilloscope: Introduction, CRO block diagram, CRT connection, Vertical amplifier, Basic function of sweep generator, Horizontal deflection system, Triggered sweep, Trigger Pulse, Delay line. Probes: - 1:1 probe, 10:1 probe, Attenuators (Uncompensated and Compensated), Dual trace CRO Ref. K: 7.1, 7.4, 7.12, 7.6, 7.3.1, 7.7, 7.8, 7.9, 7.10, 7.28.1, 7.28.2, 7.29, 7.29.1, 7.29.2 & 7.15 (ii) Analog Electronic Multimeter: Transistor voltmeter, Solid state (Op Amp based) voltmeter Ref. K: 4.7 & 4.9 (iii) Digital Instruments: D/A Conversion, Variable (weighted) resistor and Binary Ladder (4bit) type D/A Converters. Ref. M&L: 12.1 & 12.2	15 lectures	

	DMM , 3 ½ Digit, resolution and sensitivity, general specification Ref. K: 6.2, 5.8, 5.9 & 5.10.	
Unit II	a) Instrumentation Amplifier & its applications:	15
	Basic Instrumentation Amplifier, Instrumentation system, Applications of	
	Instrumentation Amplifier, Temperature indicator, light intensity meter,	lectures
	analog weight scale.	
	Ref. K: 14.3, 14.3.2, 14.4, 14.4.1, 14.4.2, 14.4.3	
	b) Active filters:	
	Introduction, Active Filters, 2nd order Low Pass Butterworth filter, 2nd order High Pass Butterworth filter, Band pass Filters, wide band pass filter, wide band rejection filter and narrow band rejection filter.	
	Ref. G: 7.1, 7.2, 7.4, 7.6, 7.7, 7.8, 7.8.1, 7.9.1 & 7.9.2	
	c) Power Supplies	
	i) Principle, block diagram, working, important specifications and operating procedures for- Fixed voltage power supply, variable power supply, dual power supply, CV and CC supply, SMPS, DC toDC	
	converter, UPS.	
	Ref. B. S. Sonde, Power Suppl <mark>ies, TM</mark> H	
	ii) Linear and switching regulators	
	Fixed output voltage regulator with current booster.	
	Ref. C & D: 16.11, 16.12, 16.1 M: 24.5	
	iii) Constant current source (ground load) using OP-Amp and pnp	
	transistor-Ref C & D: 5.5.2	
	iv) Basic and Monolithic Switching regulators (buck, boost and buck –	
	boost) (Only basic Configurations) Ref M: 24.7	
	References:	
	1. Basic Electronics and Linear Circuits by N. N.Bhargava, D. C.	
	Kulshreshtha and S. C. Gupta. TechnicalTeachers training Institute, Tata	
	McGraw Hill Publishing Company Limited.(BKG)	
	 Modern Electronic Instrumentation & Measurement Techniques by Albert D. Helfrick & William D. Cooper (PHI) Edition. (H & C) Electronic Instrumentation by H. S. Kalsi, 2nd Edition, Tata McGraw 	
	Hill.(K)	
Enri	4. Digital electronics by G. L. Tokheim (6th Editon) (Tata Mc Graw Hill)(T)	l a
EX	5. "OPAMPs and linear integrated circuits" by Coughlin & F. F. Driscoll (6th Edition), Eastern Economy Education, PHI (C & D)	cei
	6. OPAMPs & linear integrated circuits by R. A. Gayakwad, (4th Edition,	
	PHI)(G)	
	7. "Electronic Principles" by A. P. Malvino (6th edition, PHI).(M)	
	8. Digital Principle & Applications" by Malvino Leach (6th edition, TMH)	
	5 1 11 , , , , , , ,	
	(M & L)	
	Additional References:	
	The Art of Electronics, by Paul Horowitz & Winfield Hill (2nd Edition) (H & H)	

Unit III	Analysis Techniques-I	15
	1. Optical spectroscopy: Optical absorption spectroscopy,	lectures
	photoluminescence ,FTIR, Raman spectroscopy	icolui co
	2. Electron spectroscopy: XPS, Ultravoilet photo spectroscopy	
	Rutherford back scattering spectroscopy(RBS)	
	Secondary ion mass spectroscopy(SIMS)	
Unit IV	i) Properties of Nanomaterials	15
	Introduction, Mechanical properties, Structural properties, Melting of	lectures
	nanoparticles, Electric conductivity, Optical Properties, Magnetic	
	Ref. SK: 7.1, 7.2, 7.3, 7.4, 7.5, 7.6 & 7.7	
	ii) Nanolithography Introduction, Lithography using photon, Lithography using particle	
	beams, Scanning probe lithography, Soft lithography.	
	Ref. SK: 8.1, 8.2, 8.3, 8.4 & 8.5.	
	References:	
	1. Nanotechnology, Principles & Practices by Sulabha Kulkarni	
	2. Introduction to Nanotechnology by C.P.Poole, Jr. and F.J.Owens	
	3. Instrumental Methods of Analysis by H.H.Willard, I.I. Merit & J.A.Dean	
	4. X-ray structure Determination by G.H.Stout and I.H.Jensen	
	5. Fundamentals Of Molecular Spectroscopy by C .Banwell and	
	McCash	
	6. Nanomaterial by A.K. Bandyopadhyay	
	Semester VI	
	BILLA CALIFOR	
Cours	e Code Title	Credits
RUSA	CEI 601 C++ PROGRAMING AND NANOMATERIALS-II	
	Pagis Concents of Object Oriented Programming and Co.	45
	Basic Concepts of Object Oriented Programming and C++ 1) Basics of Object-Oriented Programming & Beginning with C++:	15 Lecture
	A look at Procedure-Oriented Programming, Object-Oriented Programming	Lecture
	Paradigm, Basic concepts of Object-Oriented Programming, Benefits of	
	DOP, Object-Oriented Languages, Applications of OOP.	
	What is C++?, Applications of C++, A simple C++ program, More C++	
	Statements, Example with Class, Structure of C++ Program, Creating the	
	Source File, Compiling and Linking.	
	Ref EB: 1.3, 1.4, 1.5, 1.6, 1.7 & 1.8	
	EB: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 & 2.8	
	2) Tokens and Expressions in C++:	15
	ntroduction, Tokens, Keywords, Identifiers and Constants, Basic Data	Lecture

	 Types, User- Defined Data Types, Derived Data Types, Symbolic Constants, Type Compatibility, Declaration of Variables, Dynamic Initialization of Variables, Reference Variables, Operators in C++, Scope Resolution Operator, Member Dereferencing Operators, Memory Management Operators, Manipulators, Type Cast Operator, Expressions and Their Types, Special Assignment Expressions, Implicit Conversions, Operator Overloading, Operator Precedence. Ref EB: 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18, 3.19, 3.20, 3.21, 3.22 & 3.23 (3) Control Structures and Functions: Control Structures, Functions: The Main Function, Function Prototyping, Call by Reference, Return by Reference, Inline Functions, Default Arguments, Constant Arguments, Function Overloading, Math Library Functions. Ref EB: 3.24,4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9 & 4.11 References: Berences: EB: Object Oriented Programming with C++ by E Balagurusamy, Third /Fourth Edition, Tata McGraw-Hill Publishing Company Limited. Additional references: Programming with C++ by D. Ravichandran, Tata McGraw-Hill Publ. Company Ltd. Starting out with C++ by Tony Gaddis, Third Edition, Addison Wesley Publishing Company. 	
Unit	 Analysis techniques – II i) XRD, Small angle X – ray scattering (SAXS), Low energy electron diffraction (LEED) ii) Electron Microscopy : SEM, EDAX, TEM, Environmental TEM iii) SPM, AFM, STM iv) Nano magnetic techniques : Super conducting quantum interface device measurement (SQUID), Magneto resistance measurement technique References : 1. Nanotechnology, Principles & Practices by Sulabha Kulkarni 2. Introduction to Nanotechnology by C.P. Poole, Jr. and F.J.Owens 	15 Lecture
Unit IV	 Instrumental Methods of Analysis by H.H. Willard, I.I. Merit & J.A. Dean X – ray Structure Determination by G.H. Stout and I.H. Jensen Fundamentals of Molecular Spectroscopy by C. Banwell and E. McCash Nanomaterial by A.K. Bandyopadhyay i) Some Special Nanomaterials Introduction, Carbon nanotubes (CNTs), Porous Silicon, Aerogels, Zeolites, Ordered Porous Materials Using Micelles as Templates. Ref. SK: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6. ii) Applications of nanomaterials	15 Lecture
	Introduction, Electronics, Energy, Automobiles, Sports and Toys, Textiles, Cosmetics, Domestics Appliances, Biotechnology and Medical Field, Space	

		efense, Nanotechnology and Environment. K: 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9, 10.10, 10.11.			
	PRACTICAL SEM V				
	Group 1. 2. 3. 4. 5.	ACEI5P1 –Analog Circuit & Instruments & Analysis techniques – I p A Basic Instrumentation Amplifier using 3 Op-Amps couple to Resistance Bridge (C&D Ch. 8) Second Order active Low Pass/High Pass filter (frequency response & phase relation) (K.Ch15) Active Notch Filter (frequency response & phase relation) (K.Ch.15) Adjustable Voltage Regulator using LM 317 (C&D Ch. 14) Adjustable constant Current Source using LM 317 (C&D Ch. 14) Constant Current source using OPAMP and PNP transistor (o/p current less than 50 mA) (C&D Ch. 5)			
	GROL	JP B			
	B1:	1. Synthesis of Graphine & Graphine oxide			
		2. Synthesis of porous silicon			
		3. Synthesis of nonmaterial using electrochemical techniques			
	B2:	1. Characterization study of nanomaterials & study of sensors of			
		semiconductor materials(powder)			
		2. Characterization study of nanomaterials (powder) using XRD			
E v	R	 techniques. Characterization study of nanomaterials (powder) using UV techniques. Characterization study of nanomaterials (powder) using FTIR techniques. Characterization study of nanomaterials (powder) using RAMAN techniques. 			
197	DI	techniques.			
	1. H& Albert 2. C& Drisco	ences: Group A & B C: Modern Electronic Instrumentation & Measurement Techniques by D. Helfrick & William D. Cooper PHI) Edition D: "OPAMPs and linear integrated circuits" by Coughlin & F. F. oll(6th ed.PHI) OPAMPs and linear integrated circuits by R.A. Gayakwad (4th edition,			
	5. K: E 6. M&	"Electronic Principles" by A. P. Malvino (6th edition, PHI) Electronic Instrumentation by H. S. Kalsi (TMH) 2nd Edition L: Digital Principle and Applications" by Malvino and Leach (5th n, TMH)			

	7. RPJ: Modern Digital Electronics 3rd edition (TMH) – R .P. Jain	
	8. Nanotechnology, Principles & Practices by Sulabha Kulkarni	
	PRACTICALS SEM VI	
	RUSACEI 6P1 – Programming in C++ and Analysis techniques – II	
	Group A	
	C++ Programming	
	1) Program based on Input, Output Statements (Programs to read any	
	two numbers through keyboard and to perform simple arithmetic	
	operations and to display the result)	
	2) Program based on Control Statements	
	a. Program based on if-else statement	
	b. Program based on nested if statement	
	 Program based on for loop, while loop and do-while loop. 	
	Program using switch statements and if-else ladder.	
	5) Program to study function declaration, function calling and function	
	prototype.	
	GROUP B	
	B1	
	1. Synthesis of Graphine & Graphine oxide	
	2. Synthesis of porous silicon	
	3. Synthesis of nonmaterial using electrochemical techniques	
	B2	
	1. Characterization study of nanomaterials & study of sensors of	
	semiconductor materials(powder)	
	2. Characterization study of nanomaterials (Thin film) using XRD	
	techniques.	
	3. Characterization study of nanomaterials (Thin film) using UV	
	techniques.	
_	4. Characterization study of nanomaterials (Thin film) using FTIR	-
Cw	techniques.	
C X	 Characterization study of nanomaterials (Thin film) using RAMAN techniques. 	
	techniques.	
	References: Group A & B	
	1. EB: Object Oriented Programming with C++ by E Balagurusamy, Third	
	/Fourth Edition, Tata McGraw-Hill Publishing Company Limited. 2. Starting out with C++ by Tony Gaddis, Third Edition, Addison Wesley	
	Publishing Company.	
	3.Nanotechnology, Principles & Practices by Sulabha Kulkarni	
	Additional references:	
	1) Programming with C++ by D. Ravichandran, Tata McGraw-Hill	
	Publishing Company Limited.	
	2) <u>http://www.cplusplus.com/doc/tutorial</u>	

MODALITY OF ASSESSMENT

MODALITY OF ASSESS

Theory Examination Pattern:

A) Internal Assessment - 40% = 40 marks.

Sr. No.	Particulars	Marks
1.	One Class Test/case study/online examination to be conducted in the given semester.	20
2.	One assignment based on the curriculum to be assessed by the teacher concerned	10
3.	Active Participation in routine class instructional deliveries/ Project	10
	Total	40

B) External examination - 60 % = 60 marks

Semester End Theory Assessment - 60 marks

- i. Duration These examinations shall be of **TWO hours** duration.
- ii. Paper Pattern- All questions shall be compulsory with internal choice within the questions.

	Questions	Options	Marks	Questions on	
	Q.1)A)	Any 1 out of 2	8	Unit I	
	Q.1)B)	Any 1 out of 2	4		
	Q.2)A)	Any 1 out of 2	8	Unit II	
	Q.2)B)	Any 1 out of 2	4		
	Q.3)A)	Any 1 out of 2	8	Unit III	
	Q.3)B)	Any 1 out of 2	4		
1	Q.4)A)	Any 1 out of 2	8	Unit IV	. 1
	Q.4)B)	Any 1 out of 2	4		21
	Q.5)A)	Any 1 out of 2	3	Unit I	W II
	Q.5)B)	Any 1 out of 2	3	Unit II	
	Q.5C)	Any 1 out of 2	3	Unit III	
	Q.5)D)	Any 1 out of 2	3	Unit IV	

Practical Examination Pattern

(A) Internal Examination:

Heading Practical	
Flactical	

Journal	10
Lab work Test	20
Participation	10
Total	40

(B) External (Semester end practical examination):

Practical 1
50
10
60

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ coordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examinati	ion and Marks	Distribution Pattern
		Distribution r attern

	-			
Course	RUSA	CEI501		
111	Internal	External	Total	16
Theory	40	60	100	
Course		RUSACEI5P1	1777	
	Internal	External	Total	
Practical	40	60	100	_
	Se Se	emester VI	IAHAA A	Ever
Course	RUSACEI601			EXU
	Internal	External	Total	1
Theory	40	60	100	1
Course		RUSACEI6P1	·	<u>]</u>
	Internal	External	Total	
Practical	40	60	100	

Comostar	v	
Semester	v	