S.P. Mandali's

RAMNARAIN RUIA AUTONOMOUS COLLEGE

Syllabus for: T.Y. B.Sc

Program: B.Sc. Biotechnology

Course Code: BIOTECHNOLOGY (RUSBTK)

Explore • Experience • Excel

(Choice Based Credit System (CBCS) with effect from academic year 2019-20)

S.P Mandali's Ramnarain Ruia Autonomous College Department of Biotechnology

Syllabus for T.Y.BSc Biotechnology

Credit based and Grading system To be implemented from Academic year 2019-20

Semester V				
Course code	Unit	Торіс	Credits	Lecture s/week
	Unit I	Cell cycle and apoptosis	2.5	1
	Unit II	Cell signalling-I	-	1
Paper I : Cell	Unit III			1
Biology		Cell signalling-II	_	
RUSBTK501	Unit IV	Cancer biology		1
			2.5	1
	Unit I	Carbohydrate metabolism		
Paper II:	Unit II	Protein biochemistry		1
Biochemistry	Unit III	Endocrinology-I		1
RUSBTK502	Unit IV	Endocrinology-II		
	TT • T		2.5	1
	Unit I	Enzymes and vector		1
Paper III:	TT 1. TT			1
Genetics and	Unit II	Cloning strategies and sequencing	2	1
Molecular Biology	Unit III	Genetic mapping		1
RUSBTK503	Unit IV	Gene editing and human genome	2.5	1
E X I	Unit I	Dairy technology	2.5	YCO
Paper IV:	Unit II	Brewing technology	-	1.4.4.1
Industrial	Unit III	Downstream processing		1
Biotechnology		Recent trends and development in		
RUSBTK504	Unit IV	industrial productions		
Paper V	Unit I	Introduction to Biosafety	2	1
AC-Biosafety	Unit II	GLP	_	1
KUSBTKAC501	Unit III	GMP & QA- QC	_	1
	110:4 117	Detection and testing of		1
Dracticals of	Unit IV	contaminants	6	16
Riotechnology			0	10
BIJSRTKD501 				
RUSBINI 501 &		Practical Based on all four papers		
Practicals of AC		Practicals based on AC	2	3

RUSBTKACP501			
TOTAL CREDITS		20	

Semester VI				
Course code	Unit	Торіс	Credits	Lectur es/wee k
	Unit I	Immunology	2.5	1
	Unit II	Virology		1
Paper I:	Unit III			1
Immunology,		Spectrometry and tracer techniques		
Virology and	Unit IV	Chromatography		1
Instrumentation		and		
RUSBTK601		centrifugation		
Paper II:	Unit I	Developmental biology	2.5	1
Developmental	Unit II	Assisted reproductive technology		1
biology and		and stem cell banking		
transgenesis	Unit III	Genetic engineering of plants		1
RUSBTK602	Unit IV	Transgenic animals		
	Unit I	Chemotherapeutic agents	2.5	1
		General principles of		1
	Unit II	pharmacology		
Paper III:	Unit III	Drug absorption and distribution		1
Pharmacology		Basic and regulatory toxicology		1
RUSBTK603	Unit IV			
Paper IV:	Unit I	Biofuels and biogas	2.5	1
Environmental and	Unit II	Industrial effluent treatment	2.1	- 1
biotechnology	Unit III	Plant biotechnology		1
RUSBTK604	Unit IV	Biofertilizers and biopesticides		1
Paper V:	Unit I V	Marine biotechnology introduction		X1P
AC- Marine	Unit I	and bioprospecting		VAA
biotechnology and		Applications of marine	2	1
aquaculture	Unit II	biotechnology		
RUSBTKAC601	Unit III	Introduction to Aquaculture		1
	Unit IV	Applications of Aquaculture		1
Practicals of			6	16
biotechnology				
RUSBTKP601 &				
RUSBTKP602		Practical Based on all four papers		
Practicals of AC			2	3
RUSBTKACP601		Practicals of AC		
TOTAL CREDITS			20	

SEMESTER V

TYBSC BIOTECHNOLOGY (2018-2019)

Paper I: Cell Biology

Course Objectives: To deepen the knowledge of cellular biology • To help them get acquainted with cell cycle and apoptosis • To understand detailed implications of cellular signalling To understand cancer biology Learning Outcomes: After completion of this course, student must be able to: 1. Comment on the overall cell cycle 2. Elucidate the role of apoptosis 3. Get an overall outlook about cancer biology 4. Talk about the principles of cell signalling 5. Comment on different pathways in cellular signalling and their activation and implication TOPICS Credits **Course Code | UNIT** Lectures Cell cycle and programmed cell death- Overview of cell cycle, Components of cell cycle control system, Cell cycle and intracellular control of cell 15 cycle events, apoptosis Programmed cell death (apoptosis)- intrinsic and extrinsic pathway of 2.5 apoptosis, extracellular RUSBTK501 control of cell division, cell growth and apoptosis Mechanics of cell divisionoverview of M phase, mitosis and cytokinesis Cell signalling and signal transduction: Introduction General Principles of Cell Π Signalling, Signalling via **Cell signalling-I** 15 G-Protein-linked Cell-Surface Receptors Signalling via Enzymelinked Cell-Surface

		Receptors – protein		
		tyrosine phosphorylation		
	III Cell signalling-II	Response to multiple extracellular signal molecules Morphogens, Lifetime of intracellular molecule, Binding reaction and role of Kd, Extracellular messengers and their receptors, Second messengers Role of Calcium and cAMP, Introduction, Calcium binding proteins, Role of Nitric oxide and nuclear receptors The Logic of Intracellular Signalling: Lessons from Computer-based "Neural networks"		15
Exp	IV Cancer biology	Cancer: Introduction, Characteristics of normal cell and cancerous cell. Cancer as a micro evolutionary process: invasion metastasis, angiogenesis, Tumor- Benign and malignant, Molecular genetics of cancer, oncogenes and tumor suppressor genes, Cancer virus, Diagnosis, chemotherapy and preventive measures for cancer, Cytocidal infections and cell damage, Viruses and cancer, Viroids and Prions	GE • Ex	15 Cel

1. Molecular Cell Biology. 7th Edition, (2012) Lodish H., Berk A, Kaiser C., K Reiger M., Bretscher A., Ploegh H., Angelika Amon A., Matthew P. Scott M.P., W.H. Freeman and Co., USA

2. Molecular Biology of the Cell, 5th Edition (2007) Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter. Garland Science, USA

3. Cell Biology, 6th edition, (2010) Gerald Karp. John Wiley & Sons., USA

4. The Cell: A Molecular Approach, 6th edition (2013), Geoffrey M. Cooper, Robert E. Hausman, Sinauer Associates, Inc. USA

PAPER II: Biochemistry

Course Objectives:

- To study in depth the biochemical pathways of cellular communication and system functioning
- To study metabolism in details with special reference to carbohydrates
- To study details about protein structure and their biochemistry
- Study endocrine system

Learning Outcomes: After completion of this course, student must be able to:

- 1. Understand the metabolism of carbohydrates and fates of various intermediate and end products
- 2. Understand protein structure
- 3. Comment on different types of protein interactions
- 4. Understanding the mechanisms of hormones

Course Code	UNIT	TOPICS	Credits	Lectures
	I Carbohydrate metabolism	Biochemical pathway for Synthesis and regulation of carbohydrates in Bacteria –Peptidoglycan Plants – starch and sucrose Animals – Glycogen synthesis and breakdown Gluconeogenesis, HMP pathway		15
RUSBTK502	II Protein biochemistry	Protein structure: Protein Tertiary and Quaternary Structures, Protein Denaturation and Folding, Protein Function: Reversible Binding of a Protein to a Ligand: Oxygen-Binding Proteins Complementary Interactions between Proteins and Ligands: Immunoglobulin's Protein Interactions Modulated by Chemical Energy: Actin, Myosin, and Molecular Motors - Details of Protein purification	BE 2.5 Exc	15 el
	III Endocrinology-I	Introduction to endocrinology- mechanism of action of group I and group II hormones, coordination of functions by chemical messengers, chemical structure and synthesis of hormones, hormone secretion, transport and clearance from blood Anterior Pituitary hormones and their control by hypothalamus : functions, regulation and abnormalities in growth hormones, Adrenocorticotropin, stimulating hormones		15

	Posterior pituitary gland and its relation to hypothalamus Hormones of Posterior pituitary gland their functions, regulation and abnormalities - Oxytocin and vasopressin, thyroid gland functions,	
IV Endocrinology-II	Thyroxine, calcitonin, Parathyroid gland- PTH, Adrenal medulla functions, regulation and abnormalities -epinephrine and nor epinephrine, Adrenal cortex- Glucocortocoids, Pancreas- insulin and glucagon, Female gonads- estrogens and progesterone, Male gonads- testosterone, Placenta- hCG	15

RUIA COLLEGE Explore • Experience • Excel

- 1. Textbook of Medical Physiology Guyton, A.C and Hall 11th edition J.E Saunders
- 2. Lehninger, principles of biochemistry, 4th edition (2005), David Nelson and Michael Cox W.H. Freeman and Company, New York.
- 3. Biochemistry, 4th edition (2010), Voet and Voet, John Wiley and sons, USA
- 4. Harper's Illustrated Biochemistry, 27th edition, RK Murray, DK Granner, PA Mayes and VW Rodwell, McGraw Hills publication.
- 5. Biochemistry, 4nd edition (2017), Satyanarayana and Chakrapani, Books & Allied (P) Ltd
- 6. General Microbiology, 5th edition- Roger Stainer

PAPER III: Genetics and Molecular Biology

Course Objectives:

- To learn mapping of genes with the help of bacteriological models
- To understand nature of gene and variations in gene fragments
- To study different enzymes used in molecular biology
- To learn transport of gene and genetic fragments through molecular vehicles i.e. vectors
- To understand the concept of genetic Libraries along with their maintenance, structure and application
- To study gene and RNA editing

Learning Outcomes: After completion of this course, student must be able to:

- 1. Perform statistical analysis and predict maps of gene sequences
- 2. Predict causes of unexpected outcomes of a given gene exchange study
- 3. Comment on various segments of a gene involved in regulation of the expression of a given gene product
- 4. Enlist various types of naturally available as well as artificially synthesized vectors that can be used to transfuse genes from one cell to the other
- 5. Comment on appropriate methods and parameters to be followed for selecting a genetic vector
- 6. State the use of vectors in storage materials of genetic libraries Comment on the types, basic procedure, maintenance and applications of genetic libraries.

Course Code	UNIT	TOPICS	Credits	Lectures
RUSBTK503	I Enzymes and vectors	Enzymes - Sources, types, mode of action and applications of Restriction endonucleases, DNA polymerases, Ligases, Kinases, Phosphatases, Terminal transferases, Reverse transcriptase's and Nucleases Vectors - Features and applications of pBR322, pUC19, cosmids,Phagemids, λ phage, M13 bacteriophage vector, Shuttle vector, Expression vector pET YAC	EG 2.5	E Excel
	UNIT II Cloning strategies and sequencing	Gene cloning-Isolation and purification of DNA; Isolation of gene of interest: Restriction digestion, electrophoresis, blotting, cutting, and joining DNA, methods of gene transfer in prokaryotes and eukaryotes ; Recombinant selection and		15

Unit III Genetic Mapping	immunochemical, Southern and Western analysis, nucleic acid hybridization, HART,HRT; Expression of cloned DNA molecules and maximization of expression; Cloning strategies genomic DNA libraries, cDNA libraries, chromosome walking and jumping Sequencing: Maxam Gilbert's method, Sanger's dideoxy method, Automated DNA sequencing, Pyrosequencing Genetic mapping in bacteria and Bacteriophages: by conjugation, transformation and transduction. Mapping bacteriophage genes, Fine structure analysis of bacteriophage gene		15
Unit IV Gene editing and human genome	Human genome mapping and it's implications in health and disease Mechanisms and application: RNAi, ZNF(Zinc finger nucleases), TALENS(Transcription activator like effector nucleases) CRISPR cas system		15
RU		EG	E

Explore • Experience • Excel

1. iGenetics A Molecular Approach 3rd Edition Peter J. Russell.

2. Molecular Biotechnology-Principles and Applications of Recombinant DNA Technology 3rd Edition Glick B.R., Pasternak J.J., Patten C.L.

- 3. Principles of Gene Manipulation 7th Edition Primrose S.B., Twyman R.M.
- 4. Biotechnology Fundamentals and applications by S.S. Purohit.
- 5. Genomes 3rd Edition T.A. Brown.
- 6. Biotechnology B.D. Singh.
- 7. Gene Cloning and DNA Analysis 6th Edition T.A. Brown.
- 8. Genomics Cantor C.R., and Smith C.L. John Wiley & Sons. (1999)
- 9. TALEN and CRISPR/Cas genome editing systems: tools of discovery: A.A.Nemudryi review
- 10. Molecular diagnostics- Fundamentals, Methods and Clinical applications by Lela Buckingham

PAPER IV: Industrial Biotechnology

Course Objectives:

- To study different types of fermentation processes
- To emphasize on the significance strain development for optimal product formation
- To study various commercial fermentation products
- To understand the methods and procedures of recovering and formulating the final industrial product
- To study downstream processing

Learning Outcomes: After completion of this course, student must be able to:

- 1. Suggest an appropriate fermenter for a desired biological product
- 2. Comment on dairy and brewing technology
- 3. Suggest specific process parameters to be followed and maintained throughout the process
- 4. Enlist various commercial fermentation products and also know their production procedures
- 5. Set up mini fermentation units in their laboratories for lab scale fermentation or demonstration purposes
- 6. Comment on product recovery and suggest appropriate methods to do the same

Course Code	UNIT	TOPICS	Credits	Lectures
RUSBTK504	Unit I Dairy Technology	Milk: Normal flora, changes in raw milk, enumeration. Factors affecting bacteriological quality. Preservation methods, Pasteurisation. Starter Cultures. Fermented products-Production process and spoilage- Cheese: Swiss and Cheddar, Butter, Yogurt and Buttermilk.	EG Ce O 2.5	E ₁₅
	Unit II Brewing technology	Production and types of: Wine, Beer(Lager and Ale), Vodka, Rum, Whiskey, Tequila Malo-lactic fermentation Production		15
	III Downstream processing	Introduction of DSP, Foam separation, Types of Precipitation, Filtration, Centrifugation, Chromatography in DSP, Cell disruption-	1	15

	physical and chemical methods. Solvent recovery, Membrane processes, Drying, Crystallization and Whole broth processing.	
Uni Recent aı develoj in ind produ	Brewing: Overview, Role of multinational companies, microbreweries and craft breweries, Global growth in wine drinking, Development of new wine industries, Rise of flavoured alcoholic beverages, Calorie counting and health perception, organic and biodynamic production Use of GM crops and microorganisms Therapeutic aspect of industrial production: Case study on production of vaccines	15

- 1. Applied Dairy Microbiology Elmer H Marth and James L Steele Mercel Dekker Inc New York, 2nd edition
- 2. Microbial Technology Peppler, H.J and Perlman, D 2nd Academic Press Practicals
- 3. Industrial Microbiology Prescott and Dunn CBS publishers
- 4. Dairy technology by Yadav and Grower
- 5. Fermentation technology by Stanbury and Whittkar
- 6. Handbook of alcoholic beverages- Technical, Analytical and nutritional aspects- Alan J Buglass- Vol I Wiley
- 7. Fundamentals of Microbiology by Frobisher
- 8. Industrial Microbiology by A.H. Patel
- 9. Industrial Microbiology by Casida

PRACTICALS OF BIOTECHNOLOGY

COURSE CODE	TITLE	CREDITS
	1. Cytological identification of cancer cells.	
	2. Study the effect of physical and chemical parameters on cell permeability using beetroot cells	
	3. Detection of diabetes mellitus by diabetic profile tests	
	4. Estimation of starch	
	5. Protein estimation by Bradford's method	
	6. Protein separation by PAGE (native/ SDS)	
	7. Protein purification by dialysis	3
RUSBTKP501	8. Estimation of adrenaline	
	9. Proposal writing for skill based project	

COURSE CODE	TITLE	CREDITS
	1. Transformation in <i>E.coli</i> .	
	2. Genomic DNA Extraction: Animal cells.	
	3. Restriction enzyme digestion and ligation (Kit may be used).	
	4. Replica plate technique	
	5. Gradient plate technique	
	6. Bacterial gene expression (Kit may be used).	
	7. Estimation of Milk protein-Pynes method	
	8. Detection of calcium and phosphorus in milk	3
RUSBTKP502	9. Production and microbiological analysis of Yoghurt/cheese/butter	
	10. Production of Wine/Vodka and study of its physico-chemical properties	
	IIIA COLLECT	7
K		

Explore • Experience • Excel

RUIA COLLEGE Explore • Experience • Excel

APPLIED COMPONENT- BIOSAFETY

Course Objectives:

- To understand the importance of Biosafety and GLP
- To understand the importance of GMP
- To understand importance of QA & QC

Learning Outcomes: After completion of this course, student must be able to:

1. Enlist potential hazards in laboratory or workplace

- 2. To prepare SOPs of instruments
- 3. To document GMP practices
- 4. To study quality assurance and quality control

Course Code	UNIT	TOPICS	Credits	Lectures
RUSBTKAC501 Biosafety	Unit I Introduction to Biosafety	Introduction, Biological Risk Assessment, Hazardous, Genetically modified hazards, Cell cultures, Hazardous Characteristics of Laboratory Procedures, Potential Hazards Associated with Work Practices, Safety Equipment and Facility Safeguards, Pathogenic risk and management Biosafety in biotechnology and rDNA technology		12
	Unit II GLP	Concept of GLP, Practicing GLP, Guidelines to GLP Documentation of Laboratory work, Preparation of SOPs Calibration records, Validation of methods, Documentation of results, Audits & Audit reports		12
Ex	Unit III GMP QA & QC	Concept of GMP, Requirements of GMP implementation, Documentation of GMP practices, Regulatory certification Quality control: concept of QC, Requirements for implementing QC, QA: concepts of QA, Requirements and implementation	• Ex	(cel 12
	Unit IV Detection and testing of contaminants	Microbial contamination in food and pharma product, Some common microbial contaminants , Microbiological Assays for pharmaceutical products, Regulatory Microbiological testing in pharmaceuticals		12

1. Pharmaceutical Microbiology - Hugo, W.B, Russell, A.D 6th edition Oxford Black Scientific Publishers.

2. Biosafety in Microbiological and Biomedical Laboratories - 5th Edition, L. Casey Chosewood Deborah E. Wilson U.S. Department of Health and Human Services Centers for Disease Control and Prevention National Institutes of Health.

3. WHO handbook on GLP

4. Molecular Biotechnology-Principles and Applications of Recombinant DNA Technology 3rd Edition Glick B.R., Pasternak J.J., Patten C.L.

Explore • Experience • Excel

COURSE CODE	TITLE	CREDITS
	1. First aid methods and safety in laboratory/ workplace	
	2. Biosafety: Codes	
	3. Validation of measuring cylinders, colorimeters	
RUSBTKACP501	4. Calibration of pH meter and weighing balance	2
	5. Testing for adulterants in food	
	6. Making SOP for any 2 major laboratory instruments	
	7. Sterility of injectables	
	8. Bioassay of Vitamin b12	
	9. QA/QC of food/brewery products	

PRACTICALS OF APPLIED COMPONENT

TYBSC BIOTECHNOLOGY

SEMESTER VI

PAPER I: Immunology, Virology and Instrumentation

Course Objectives:

- To understand detailed applications of the immunology
- To understand structural and Medical implications of different types of common viruses
- To study different instruments used in regular Biotechnological work with respect to their working and principle _____

Learning Outcomes: After completion of this course, student must be able to:

- 1. Discuss the ongoing and future implications of immunology
- 2. Talk about the host interactions with reference to viral attacks
- 3. Comment on different types of viruses and their distinguishing characteristics

Medical concerns and strategies for dealing with viral attacks on humans as well as other living organisms

4. Enlist various essential instruments used regularly in Biotechnology related work and state it's applications

5. Understand the working and principles of these instruments

Course Code	UNIT	TOPICS	Credits	Lectures
RUSBTK601	RUIA Immunology	MHC class I and II Structure , function, arrangement, interaction with epitopes, polymorphism, role of MHC in diseases, antigen presentation: endogenous antigen , exogenous antigens, TCR, BCR , accesory molecules: structure, function Introduction to CAR-T cell	GE • Ex	15 cel
	II Virology	Introduction to viruses- Position in biological spectrum Virus properties, General structure of viruses Baltimore Classification and Taxonomy(ICTV), Cultivation of viruses, Virulent phages and Lytic cycle - T even phages, One step growth experiment	2.3	15

		Temperate phages and lysogeny -lambda phage, Reproduction of ds DNA phages Hepatitis/ss RNA(influenza), animal viruses and plant Virus(TMV) Virus purification and assays Cytocidal infections and cell damage Viruses and cancer		
	III Spectrometry and tracer techniques	Principle, instrumentation and working of Fluorescence, Luminometry, Infrared, Atomic absorption Isotopes in Biology: Detection Techniques of Radioactivity using GM counter, Scintillation counter, Applications of Tracer techniques in Biology		15
Exp	IV Chromatography and centrifugation	Chromatography: Principle, working and application of Affinity, Ion-exchange, Gel permeation, HPLC- Method development and validation, GC. Centrifugation: Types, principle, working and applications of Differential and Density Gradient - Isopycnic, Rate, zonal, Gradient materials, preparation, sample application, recovery, choice of rotors.	GE • Ex	¹⁵ cel

- 1. Mim's Medical Microbiology 5th edition
- 2. Microbiology by Prescott Harley and Klein 5th edition Mc Graw Hill
- 3. Medical Microbiology Jawetz, E., Brooks, G.E, Melnick, J.L., Butel, J.S Adelberg E. A 18th edition
- 4. Medical Microbiology by Patrick Murray 5th edition
- 5. Foundations In Microbiology by Talaro and Talaro Third edition W.C Brown

- 6. Understanding Viruses by Teri Shors
- 7. Biophysics (2002) Vasantha Pattabhi and N. Gautham, Kluwer Academic Publishers
- 8. Physical Biochemistry: principles and applications, 2nd edition (2009), David Sheehan , John Wiley & Sons Ltd
- 9. HPLC method validation for pharmaceuticals: a review (2013), Harshad V. Paithankar, International Journal of Universal Pharmacy and Bio Sciences 2(4): JulyAugust.
- 10. Lehninger, principles of biochemistry, 4th edition (2005), David Nelson and Michael Cox W.H. Freeman and Company, New York.
- 11. Biochemistry, 4th edition (2010), Voet and Voet, John Wiley and sons, USA
- 12. Biochemistry, 4nd edition (2017), Satyanarayana and Chakrapani, Books & Allied (P) Ltd
- 13. Biophysical Chemistry by Upadhayay and Nath
- 14. Immunology by Kuby 5th, 7th edition
- 15. Immunology by Riott
- 16. Immunology Palan and Pathak

RUIA COLLEGE Explore • Experience • Excel

PAPER II: DEVELOPMENTAL BIOLOGY AND TRANSGENESIS

Course Objectives:

- To introduce to basic concepts of developmental biology
- To understand basics of assisted reproductive technology and stem cells
- To understand the procedure for creating transgenic plants and animals

Learning Outcomes: After completion of this course, student must be able to:

- 1. Understand basics of gametogenesis, fertilization, post fertilization events
- 2. State the methods used for transgenesis of plants and animals
- 3. Comment on the vectors used for transgenesis
- 4. Understand the applications of transgenic organisms

Course	UNIT	TOPICS	Credits	Lectures
Code		TOTICS	creans	Lectures
RUSBTK602	I Developmental biology	Mammalian embryonic development: Reproductive systems, Gametogenesis, Fertilization, Cleavage, Implantation, Gastrulation, cell fate and lineages of three germ layers, fate map Concept of differentiation and embryonic induction	EG	15
	II Assisted reproductive technology and Stem cell banking	Infertility, causes of infertility, managing infertility through ART : IVF, ICSI, GIFT and ZIFT, Artificial insemination, test tube baby, Embryo transfer New techniques in ART Stem cells, sources of stem cells, cord blood banking, collection and banking process, public and private banks, applications/uses of stem cell banks	2.5	Excel
	III Genetic engineering in	Genetic engineering of plants; Methodology. Plant transformation with the Ti		15

plants	plasmid of A.tumefaciens, Ti	
I	plasmid derived vector system -	
	Transgenic plants: Physical	
	methods of transferring, genes to	
	plants : electroporation	
	microprojectile bombardment	
	liposome mediated protoplast	
	fusion Vectors for plant cells	
	Improvement of good quality	
	improvement of seed quanty	
	protein	
	Transgenic mice- methodology-	
	retroviral method, DNA	
	microinjection, ES method,	
IV	genetic manipulation with cre-	
Transgenic	loxP, Vectors for animal cells,	15
animals	Transgenic animals	
	recombination system, Cloning	
	live stock by nuclear transfer,	
	Transgenic fish	

- 1. Principles and techniques in biochemistry and molecular biology (2010), Keith Wilson and John Walker, 7th
- 2. iGenetics A Molecular Approach 3rd Edition Peter J. Russell.
- 3. Molecular Biotechnology-Principles and Applications of Recombinant DNA Technology 3rd Edition Glick B.R., Pasternak J.J., Patten C.L.

Excel

- 4. Principles of Gene Manipulation 7th Edition Primrose S.B., Twyman R.M.
- 5. Developmental Biology; Scott Gilbert; 9th Edition
- 6. Langman's medical embryology- T.W. Sadler
- 7. Development of chordate biology- Verma and Agarwal
- 8. Review article: Assisted reproductive technology: techniques and limitations- by Mr. Begum
- 9. Review article: Assisted reproductive technology- Simon M Kelly
- 10. Umbilical cord blood banking: Consensus statement of the Indian Academy of Pediatrics
- 11. Umbilical cord blood banking- Royal college of Obstetrician & Gynaecologists

12. Collection, Processing and Banking of Umbilical Cord Blood Stem cells for Clinical use in transplantation and regenerative medicine- David T. Harris

13. Stem cell banking for Regenerative and Personalized medicine: Biomedicines 2014 by David T. Harris

PAPER III: BASIC PHARMACOLOGY

Course Objectives:

- To understand different antimicrobial agents
- To learn the general principles of pharmacology
- To understand the concept of toxicology
- To study the mechanism of drug absorption and distribution
- To understand basic and regulatory toxicology

Learning Outcomes: After completion of this course, student must be able to:

- 1. Elucidate the concepts of pharmacology
- 2. Comment on causes of allergic reactions with response to drug or poison
- 3. Obtain clarity about mechanism of absorption of drugs from different tissues
- 4. State the mechanism of action of different antimicrobials

Course	UNIT	TOPICS	Credits	Lectures
Code				
RUSBTK603	RUI I Chemotherapeutic agents	Discovery and Design of antimicrobial, Classification of Antibacterial agents, Selective toxicity, MIC, MLC, Inhibition of cell wall synthesis (Mode of action for): Beta lactam antibiotics: Penicillin, Cephalosporins; Glycopeptides: Vancomycin; Polypeptides: Bacitracin Injury to plasma membrane: Polymyxin, Inhibition of protein synthesis: Aminoglycosides, Tetracyclines, Chloramphenicol, Macrolides Erythromycin, Inhibition of nucleic acid synthesis: Quinolones, Rifampicin, Metronidazole, Antimetabolites: Sulphonamides, Trimethoprim Drug resistance: Mechanism origin, transmission, Use and misuse of antimicrobial agents	EG ^{2.5}	E Ex ¹⁵ cel

		Antifungal drugs Antiviral		
		drugs		
		Machanism of drug action		
		drug recentors and		
		, drug receptors and		
		biological responses		
		second-messenger		
		systems, the chemistry of		
		drug-receptor binding,		15
		dose-response		
		relationship: therapeutic		
	II	index, ED, LD, Potency		
	General principles	and Intrinsic Activity,		
	of pharmacology	Drug antagonism		
	<u> </u>	Absorption of drugs from		
		the alimentary tract		
		factors affecting rate of		
		gastrointestinal absorption		
		absorption of drugs from		
		lungs and skin absorption		
		of drugs after perenteral		15
		of drugs after parenteral		15
		influencing drug		
		distribution binding of		
	TIT	distribution, binding of		
		drugs to plasma proteins,		
	Drug Absorption	Physiological barriers to		
	and distribution	drug distribution		
		Background Definitions		
		Causation: degrees of		
		certainty Classification,		
		Causes Allergy in response	2.5	The second second
		to drugs, Effects of		
		prolonged administration:		
100		chronic organ toxicity,		
1	VN AKA	Adverse effects on	CO ()	VCO
	ADIVIC U	reproduction		LAUCI
		Poisons: Deliberate and		
		accidental self-poisoning,		15
		Principles of treatment		15
		Poison-specific measures		
		General measures,		
		Specific poisonings:		
		cyanide, methanol,		
		ethylene glycol,		
		hydrocarbons, volatile		
	IV	solvents, heavy metals.		
	Basic and regulatory	herbicides and pesticides.		
	toxicology	biological substances		
		(overdose of medicinal		

	drugs is dealt with under individual agents), Incapacitating agents:	
	drugs used for torture, Nonmedical use of drugs	

- 1. Textbook of Medical Physiology Guyton, A.C and Hall 11th edition J.E Saunders
- 2. Modern Pharmacology with clinical Applications Craig, C.R, Stitzel, R.E 5th edition
- 3. Clinical Pharmacology Bennet, PN, Brown, M.J, Sharma, P 11th edition Elsevier
- 4. Biochemistry Metzler, D.E Elsevier
- 5. Microbiology by Prescott Harley and Klein 5th edition Mc Graw Hill
- 6. Medical Microbiology Jawetz, E., Brooks, G.E, Melnick, J.L., Butel, J.S Adelberg E. A 18th edition
- 7. Medical Microbiology by Patrick Murray 5th edition
- 8. Foundations In Microbiology by Talaro and Talaro Third edition W.C Brown
- 9. Understanding Viruses by Teri Shors
- 10. Mim's Medical Microbiology 5th edition
- 11. Casarett & Doull's Toxicology- The Basic Science Of Poisons

PAPER IV: ENVIRONMENTAL AND PLANT BIOTECHNOLOGY

Course Objectives:

- To understand the importance of Environmental biotechnology and parameters
- To study the importance of biogas and biofuels
- To introduce to the various treatment procedures applied for wastewater and industrial effluents
- To understand the important techniques in plant biotechnology
- To understand the applications of biofertilizers and biopesticides
- Learning Outcomes: After completion of this course, student must be able to:
- 1. Set up reactor system for biogas, biofuel, biodiesel
- 2. Set up mini water treatment plant
- 3. To study biodegradation of waste using treatment plants
- 4. Comment on different techniques and their uses in plant biotechnology
- 5. To produce biofertilizer and biopesticide in laboratory

Course	UNIT	TOPICS	Credits	Lectures
Code				
		Biomass sources: Waste		
		sources, liquid, solid,		
		Agrobased sources, Energy		
		scenarios, Biogas technology-		10
		biogas plant & types,		
RUSBTK604		biodigester. Biogas-		1 29
		composition, production and		
		factors affecting production,		15
		uses		
	r Y NIAKO	Biofuels – ethanol production.		FYCOL
	APIVIC	Microbial hydrogen production		FVAL
		Biodiesel, Case studies on		
	I	Biogas and biofuels, Advanced	2.5	
	Biogas and	biofuels		
	biofuels	Details of carbon credits		
		Biological processes for		
		industrial effluent treatment,		
		aerobic biological treatment-		
		activated sludge process,		
	П	CASP, advanced activated		15
	Industrial	sludge processes (any two)		
	effluent	Biological filters, RBC, FBR		
	treatment	Anaerobic biological treatment-		
		contact digesters, packed bed		

	reactors, anaerobic baffled digesters, UASB		
III Introduction to plant biotechnology	Introduction, Micropropagation, , Somaclonal Variations, Haploid Plants, Embryo Rescue, Somatic Hybrids And Cybrids, Germplasm Conservation, Molecular Markers And Maps		15
	Biofertilizer: Nitrogen-fixing Rhizobacteria – Symbiotic Nitrogen Fixers, Nonsymbiotic Nitrogen Fixers, Plant Growth Promoting Microorganisms- Phosphate- Solubilizing Microbes (PSM), Phytohormones and Cytokinins, Induced Systemic Resistance Plant Growth Promotion by Fungi- Mycorrhizae, Arbuscular Mycorrhizae, Ectomycorrhizae Microbial Inoculants- Inocula, Carriers, and Applicatio ns, MonocultureandCo- cultureInoculantFormulations Biocontrol, Polymicrobial Inoculant Formulations Biopesticides - types, Bacillus		15
IV Biofertilizers	thuringiensis, insect viruses and entomopathogenic fungi(characteristics, physiology, mechanism of	.EG	E
and biopesticide	action and application)	ce	Excel

- 1. Environmental Biotechnology Allan Scragg Oxford University press
- 2. Environmental Biotechnology (Basic concepts and applications) Indu Shekar Thakur IK International
- 3. Environmental Biotechnology (Industrial pollution management) S.N. Jogdand Himalaya Publishing House
- 4. Biotechnology- expanding horizons: B D Singh
- 5. Microbial Technology Peppler, H.J and Perlman, D 2nd Academic Press Practicals

6. Research paper: Use of carbon credits/trading for environmental protection (Environmental science E-ISSN no. 2454-9916, Volume 2 Issue 9)

- 7. Environmental Biotechnology by M.H. Fulekar
- 8. Advances in Biotechnology by S.N. Jogdand
- 9. Case studies on Biogas & Biofuels by MNRD

RUIA COLLEGE Explore • Experience • Excel

PRACTICALS OF BIOTECHNOLOGY

COURSE CODE	TITLE	CREDITS
	1. Phage assay: Demonstration	
	2.Separation of components from a mixture using Affinity chromatography (Kit may be used)	
	3. Separation of components from a mixture using ion exchange chromatography (Kit may be used)	
	4. Separation of components from a mixture using Size exclusion chromatography (Kit may be used)	3
RUSBTKP601	5. HPLC method validation.	Ū
	6. Density gradient centrifugation	
	7. Chick embryo candling and inoculation methods Demonstration experiment.	
	8. Semen analysis	
R	9. Isolation of Protoplast and fusion10. Skill based project	
Explo	re • Experience • Ex	cel

COURSE CODE	TITLE	CREDITS
	1. Antibiotic sensitivity test using agar cup method	
	2. Antibiotic sensitivity test using paper disc method	
	3. Antibiotic sensitivity test using ditch method.	
	4. Synergistic action of two drugs	
	5. LD 50, ED 50 evaluation using suitable models	
	6. Isolation of phosphate solubilising organism	2
RUSBTKP602	7. Quantitative measurement of phosphate solubilisation	3
	8. Isolation of Rhizobium and Azatobacter	
	9. Study the effect of plant growth using them as microbial inoculants	
	10. Extraction of biopolymer from Azatobacter	
R	UIA COLLEGE	

Explore • Experience • Excel

RUIA COLLEGE Explore • Experience • Excel

APPLIED COMPONENT: MARINE BIOTECHNOLOGY

- To study the different types of marine microorganisms, marine ecosystem
- To study the use of marine organisms in production of drugs, enzymes, functional foods, nutraceuticals and cosmetics
- To understand aquaculture and its application

Learning Outcomes: After completion of this course, student must be able to:

- 1. Obtain clarity on the functioning of marine ecosystem
- 2. Elucidate on the use of marine organisms and their applications in industry
- 3. Talk about the types and process of aquaculture
- 4. Understand the use of fish oil and fish foods
- 5. Understand the use of marine bio resources

Course Code	UNIT	TOPICS	Credits	Lectures
RUSBTKAC601	Unit I Marine biotechnology Introduction & Bioprospecting	Introduction to Marine Biotechnology, Bioprospecting, Methods for Microbial Bioprospecting in Marine Environments, Biotechnological Potential of Marine Microbes, Bioactive compounds from other Marine Organisms:fungi, Microalgae, Seaweeds, Actinomycetes, sponges		12
		Drugs from Marine		
Ex Unit II Applications of marine biotechnology		organisms: Pharmaceutical compounds from marine flora and fauna Marine Microbial Enzymes- Marine Extremozymes and Their Significance Marine Functional Foods: Marine Marine Sources as Healthy Foods or Reservoirs of Functional Ingredients Marine Nutraceuticals : Marine Bioactives as Potential Nutraceuticals Cosmetics from Marine Sources: Definition, components and cosmeceuticals		
	Unit III	Introduction to aquaculture -		
	Introduction to	objectives, Selection of site		12
	Aquaculture	and species, Types and		

aquaculture	market place in India Total	 48
Applications of	Macroalgae applications	
Unit IV	products, fish decomposition,	
	nutritive value, fishery	
	Fish as food- composition.	12
	liver oil industry in India	
	Fish oils- preparation of body	
	Products of fishing industry:	
	cultivation	
	Macroalgae/ seaweed	
	culture of prawn	
	extensive and semi-intensive	
	integrated fish farming,	
	organisations, polyculture,	
	present status, hazards,	
	process, history and scope,	

1. Kim, S.K. Springer Handbook of Marine Biotechnology; Springer: Berlin, Germany; Heidelberg, Germany, 2015.

2. Nollet, Leo M. L- Marine microorganisms- extraction and analysis of bioactive compounds-CRC Press_Taylor& Francis (2017)

3. R. S. K. Barnes, R. N. Hughes(auth.)-An Introduction to Marine Ecology, Third Edition-Wiley-Blackwell (1999)

4. Blanca Hernández-Ledesma, Miguel Herrero-Bioactive Compounds from Marine Foods-Plant and Animal Sources-Wiley-Blackwell (2013)

5. Fabio Rindi, Anna Soler-Vila, Michael D. Guiry (auth.), Maria Hayes (eds.)-Marine Bioactive Compounds_ Sources, Characterization and Applications-Springer US (2012)

6. W. Evans-Trease and Evans Pharmacognosy 15 th ed.-Saunders (2010)

7. Hanbook of Fisheries And Aquaculture- Omprakash Sharma- Agrotech Publication

PRACTICALS OF APPLIED COMPONENT

COURSE CODE	TITLE	CREDITS
	1. DPPH assay for antioxidant extracted from marine organism	
	2. Extraction and estimation of Gelatin / Collagen.	
	3. Extraction of alkaloids/carotenoids from marine	
	organisms and their separation by TLC.	
RUSBTKACP601	4. Isolation of bioluminescent organism from fish	2
	5. Extraction of body oil from fish	
	6. Isin glass extraction from swim bladder of fish	
	7. Length -Weight relationship of fish	
	8. Preparation of fish meal by fish by products	
	9. Estimation of moisture content from fish tissue	
K I		2

Explore • Experience • Excel

MODALITY OF ASSESSMENT

Theory Examination Pattern:

A)

Internal Assessment - 40% :40 marks.

Sr No	Evaluation type	Marks
1	One Assignment (Case study/Project based/Animation/ Review writing/ Video demonstration/ Pictorial or flow sheet representation/ Industrial visit report etc.)	20
2	One class Test (multiple choice questions / objective)	20

B) External examination - 60 %

Semester End Theory Assessment - 60 marks

- i. Duration These examinations shall be of **2 hours** duration.
- ii. Paper Pattern:
 - 1. There shall be **04** questions each of **15** marks. On each unit there will be one question.
 - All questions shall be compulsory with internal choice within the questions (60% options)

Questions	Options	Marks	Questions on
Q.1)A)	Any 5 out of 8	eriesice	Unit I
Q.1)B)	Any 2 out of 3	10	
Q.2)A)	Any 5 out of 8	5	Unit II
Q.2)B)	Any 2 out of 3	10	
Q.3)A)	Any 5 out of 8	5	Unit III
Q.3)B)	Any 2 out of 3	10	
Q.4)A)	Any 5 out of 8	5	Unit IV
Q.4)B)	Any 2 out of 3	10	

Practical Examination Pattern:

(A)Internal Examination: Pattern for one Practical paper

Heading	Practical
Journal	10
*Test (2 practicals-15M	30
each)	
Total	40

(Internal Practical exam pattern is same for both practical papers and AC)

*Sem VI- Practical paper I (25M Internal project evaluation + 5M practical)

(B'	External (Semeste	r end	pract	ical ex	camination): Pa	ttern f	for one	practical	par	per
			001110010		piuot	10ui 07	ammanon				praotiour	Pup	201

Particulars		Practical						
Laboratory work		60						
2 Major practicals		20 & 25 M each						
1 Minor practicals		10 M each						
Viva/ Spots		05 M each						
Total		60						
(External Practical exam pattern is same for both practical papers and AC)								
Skill based project in Semester VI - 50M								
Internal evaluatio	n- 25M	ience 🖌 Ex	CA					
External evaluation	on- 25M							

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / Incharge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks DistributionPattern

Semester—V & VI

Course	RUSBTK501/601			RUSBTK502/602			Grand Total	
	Internal	External	Total	Internal	External	Total		
Theory	40	60	100	40	60	100	200	
Course	Course RUSBTKP501/601							
		Internal		External				
Practicals		40			60		100	

Course	RUSBTK503/603			RUSBTK504/604			Grand
							Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Course			RUSBT	(P502/602			
			1 -V		1 Delle		
	KU	Internal	C		External	JE	
Practicals	40			60			100
Here .		100					

EXPIO	re o I	EXD6	erien		EXCE
_	Course	RUSBTK	AC501/601	Grand	
				Total	
		Internal	External		
	Theory	40	60	100	
		RUSBTK	P501/601		
	Practicals	40	60	100	