Resolution Number for Academic year 2019-20 syllabus

AC/II(18-19).2.RUS10

S.P. Mandali's Ramnarain Ruia Autonomous College

Syllabus for FYBSc

Program: BSc

Course: Physics(RUSPHY)

(Credit Based Semester and Grading System with effect from the academic year 2019-20)

		SEMESTER-I		
COURSE CODE	UNIT	TITLE	Credits	Lecture / Week
RUSPHY101		Mechanics, Optics &Thermodynamics	2	3
		Mechanics		
	II	Optics		
	III	Thermodynamics		
RUSPHY102		Nuclear Physics & Quantum Mechanics	2	3

RUIA COLLEGE Explore • Experience • Excel

	I	Nuclear Physics basics and Radioactivity		
	II	Nuclear de SEMES JERN luclear		
COURSE CODE	UNIT III	TITLE Origin of Quantum Theory and X-rays	Credits	Lecture / Week
RUSPHP01	Physic	s Laboratory Course (Group A + Group B	2	6
RUSPHY201		Skill Experiments) Mathematical Physics & Mechanics	2	3
		Total	6	12
	I	Total Vector algebra and Vector calculus		
	II	Differential equations and Transient		

RUIA COLLEGE Explore • Experience • Excel

	III	Harmonic Oscillations and Wave Motion		
RUSPHY202		Electronics & Electricity	2	3
	I	Circuit theorems and Alternating		
	II	Rectifier Circuit and Transistor as an		
	III	Digital electronics and binary algebra		
RUSPHP01	Physi	cs Laboratory Course (Group A + Group B + Skill Experiments)	2	6
		Total	6	12

Course Code: RUSPHY101

Course Title: Mechanics, Optics & Thermodynamics
Academic year 2019-20

Learning Objectives: After successful completion of this course, students would acquire the following knowledge & skills:

- (1) The ability to apply the principles of physics to solve innovative and unfamiliar problems
- (2) The ability to explore and deduce quantitative results in the extentsof physics

- (3) The ability to use contemporary experimental apparatus and analysis tools to acquire, analyze and interpret scientific data
- (4) The ability to communicate scientific results effectively in presentations or posters
- (5) A comprehensive, quantitative and conceptual understanding of the core areas of physics, including mechanics, optics, modern physics, thermodynamics, electrostatics at a level attuned with graduate programs in physics at peer institutions

Learning Outcomes: After the successful completion of this course, the student will be able to:

- 1. Understand Newton's laws and apply them in calculations of the motion of simple systems
- 2. Use the free body diagrams to analyze the forces on the object
- 3. Understand the concepts of friction and the concepts of elasticity, fluid mechanics and be able to perform calculations using them
- 4. Understand the concepts of lens system and interference
- 5. Apply the laws of thermodynamics to formulate the relations necessary to analyze a thermodynamic process
- 6. Demonstrate quantitative problem solving skills in all the topics covered

RUIA COLLEGE

EXD OF Detail Syllabus 10 EX

	SEMESTER I	
Course Code	Title	Credits
RUSPHY101	Mechanics, Optics & Thermodynamics	2
Unit I	Mechanics	15 lectures
	Newton's laws – Newton's first, second law and third laws of motion; Interpretation and applications; Inertial and non-inertial frames of reference; Pseudo forces. Worked out problems [Numerical from	

		1
	references- HP,HCV and HRW]	
	HCV: 5.1, 5.2, 5.3, 5.4, 5.5, 5.7	
	Flasticity Povious of plastic constants, V.K.n. and	
	Elasticity – Review of elastic constants - Y, K, η and σ; Equivalence of shear strain to compression and	
	extension strains; Relation between elastic	
	constants; Couple for twist in cylinder; Problems from	
	all topics.	
	HP: 15.2A, 15.3A, 15.4A, 15.5A, 15.7A	
	Fluid Dynamics –Introduction, Viscosity, Equation of	
	continuity; Bernoulli's equation; streamline and	
	turbulent flow; lines of flow in airfoil; Poiseuille's	
	equation; Problems from all topics.	
	HP: 15.1B, 15.2B, 15.3B, 15.4B, 15.5B, 15.6B	
Unit II	Ontico	15 lectures
Offic II	Optics	15 lectures
	Review of Lens Maker's Formula; Newton's Lens	
	Equation; Magnification – Lateral, Longitudinal and	
	Angular. Equivalent focal length of two thin lenses, thick lens,	
	cardinal points of thick lens, Ramsden & Huygens	
	Eyepiece.	
	BSA: 4.10, 4.10.1, 4.11, 4.12, 4.12.1, 4.12.2, 4.12.3,	
	4.17, 4.14.1 to 4.17.4, 6.1, 6.2, 6.2.1 to 6.2.3, 10.10,	
	10.11	
	Aberration: Spherical aberration, reduction in spherical	
	aberration, Chromatic & Achromatic aberration,	
	Condition for achromatic aberration.	
T- 1	BSA: 9.2, 9.3, 9.4, 9.5, 9.5.1, 9.6, 9.10, 9.11, 9.12,	W 1
FYDIC	9.13(1) (2)	YCA
Unit III	Thermodynamics	15 lectures
	Behavior of Real Gases & Real gas equation; van der	
	Waal equation.	
	Thermodynamic Systems; Zeroeth law of	
	Thermodynamics; Concept of Heat; First law of	
	Thermodynamics; Non-adiabatic process & Heat as a	
	path function; Internal energy; Heat capacity & specific	
	heat; Application of first law to simple processes;	
	General Relations from the first law; Indicator diagrams; Work done during Isothermal & Adiabatic	
	diagrams, work done during isothermal & Adiabatic	

l v	Process. Vorked out examples, Problems from all topics ISH: 2.1 to 2.12, 4.1 to 4.14	
	PRACTICALS	
	Skill Experiments: 1. Absolute and Relative Error Calculation	
	Graph Plotting	
	Use of Digital Multimeter	
	4. Use of Screw Gauge, Vernier Calipers, and	
	Travelling Microscope	
	5. Spectrometer (Schuster's Method)	
	Regular Exper <mark>iments:</mark>	-
	Group A	1 credit
	1. Torsional oscillations	
	2. Y by vibration	
	3. Thermistor Characteristics	
	Helmholtz Resonator	
	5. J by Electrical method	
	6. η by Poiseuille's method	
	III COLLEC	
K	Any one out of the following is equivalent to two experiments from Group A and/or Group B	E
	1. Student should carry out mini-project up to the	
Funda	satisfaction of the Professor or In-Charge of the	
EXDIO	Practical 2. Study Tour: Students participated in study tour	ax(cel
- ALPIGI	must submit a study tour report	
Ø		
	the list should be completed in the first semester	
Ø	, ,	
Ø	the Journal Certified Journal is a MUST for a candidate to be	
	eligible in the end semester practical examination.	
Ø	Internal component of Practical examination	
	Evaluation is based on regular experiments and skill experiments.	

Ø For External practical examination, the learner will	
be examined in 2 experiments (one from each	
group).	

References:

- 1. Mechanics Concepts of Physics by H. C Verma (Vol. 1) (HCV)
- 2. Mechanics by Hans & Puri (HP)
- 3. A text book of Optics by Brijlal, Subramanyam & Avadhanulu (BSA)
- 4. Heat, Thermodynamics & Statistical Physics by Brijlal, Subramanyam & Hemne (BSH)

Additional References:

- 1. Classical Dynamics by Thornton & Marion (5th Ed)
- 1. Fundamental of Physics (extended) Haliday, Resnick & Walker (6th Ed.)
- 2. Optics by C. L Arora
- 3. Fundamentals of Optics Khanna and Gulati
- 4. Principles of Optics B. K. Mathur and T. P. Pandya (3rd Ed.)
- 5. Heat & Thermodynamics by M. W Zemansky & R. H Dittman
- 6. Basic Thermodynamics by Evylen Guha
- 7. Theory and Experiments on Thermal Physics D. K. Chakrabarti (2006 Ed)

Explore Experience Excel Course Code: RUSPHY102

Course Title: Nuclear Physics & Quantum Mechanics

Academic year 2019-20

Learning Objectives: After successful completion of this course, students would acquire the following knowledge & skills:

- (1) The ability to apply the principles of physics to solve innovative and unfamiliar problems
- (2) The ability to explore and deduce quantitative results in the extents of physics
- (3) The ability to use contemporary experimental apparatus and analysis tools to acquire, analyze and interpret scientific data
- (4) The ability to communicate scientific results effectively in presentations or posters
- (5) A comprehensive, quantitative and conceptual understanding of the core areas of physics, including mechanics, optics, modern physics, thermodynamics, electrostatics at a level attuned with graduate programs in physics at peer institutions

Learning Outcomes:

After successful completion of the course, the student will be able to:

- 1. Understand the concept of lens and apply it to practical eyepieces
- 2. Understand the phenomenon of interference with examples
- 3. Get an idea about the nucleus and its properties
- 4. Get a glimpse of dual nature of light
- 5. Study the particle nature of matter with Compton effect

Detail Syllabus

	SEMESTER I	
Course Code	Title	Credits
RUSPHY102	Nuclear Physics & Quantum Mechanics	2
Unit I	Nuclear Physics basics and Radioactivity	15 lectures
	Structure of Nuclei: Basic Nuclear Properties, Composition, Charge, Size	
Explo	BSS: 10.1; AB: 11.1, 11.2 Rutherford's α-scattering experiment for estimation of nuclear size, Measurement of Nuclear radius – Hofstadter's Experiment SBP: 4.1.1, 4.1.2 Mass Defect, Binding Energy, Packing Fraction, BE/A vs A plot, Stability of Nuclei (N vs Z Plot); Problems	Exce
	from all topics. IK: 9.5; BSS: 10.5, 10.6; AB: 11.3, 11.4	
	Radioactivity: Radioactive Disintegration, Concept of Natural & Artificial Radioactivity, Properties of α , β , & γ -rays, Radioactive Decay, Laws of Radioactive growth & decay, half-life, mean life, units of	

	radioactivity, successive disintegration, radioactive equilibrium (Ideal, Secular & Transient Equilibrium), Determination of age of Earth. Radioactive series, Carbon Dating, Radioactive Isotopes and its applications (Medicine, Food & Agriculture, Industry, Archaeological Field) SBP: 2.1, 2.2, 2.3, 2.6, 2.7, 2.8, 2.9, 2.9, 2.10, 2.11, 2.12, 2.13 IK: 10.1, 10.2; AB: 12.1, 12.2	
Unit II	Nuclear detectors and Nuclear Reactions	15 lectures
	Interaction between particles and matter, Ionization chamber, Proportional counter and GM counter, problems SBP: 1.1.2, 1.1.3 (I & ii); IK: 2.8; BSS: 9.13, 9.14	
	Nuclear Reactions: Types of Reactions and Conservation Laws. Concept of Compound and Direct Reaction, Q value equation and solution of the Q equation, problems. SBP: 3.1 to 3.5; BSS: 3.3, 3.4, 3.5; 11.2, 11.3, 11.5, 11.6 Fusion and fission definitions and qualitative discussion with examples. BSS: 12.3, 12.7; AB: 12.9, 12.11	
Unit III	Origin of Quantum Theory ,X-rays, and Compton Effect	15 lectures
	Origin of Quantum Theory: Black-body Radiation, Black Body Spectrum, Wien's Displacement law; Wave particle Duality, deBroglie Waves, Experimental Verification of deBroglie Waves, (Davisson-Germer	
Explo	Experiment, G. P Thomson Experiment) Heisenberg's Uncertainty Principle, Different forms if Uncertainty principle, Applications of Uncertainty Principle. BSS: 2.1 to 2.5, 3.1 to 3.6, 3.9	VCO
	X-Rays: Production (Coolidge tube), Continuous & Characteristics of x-ray spectra, x-ray diffraction (Laue's diffraction pattern) Bragg's Law, Bragg's x-ray spectrometer, Properties & Applications of x-rays. BSS: 6.1, 6.2, 6.3, 6.4; AB: 2.5, 2.6;	
	Compton Effect, Pair Production, Photons & Gravity, Gravitational Red Shift. Problems from all topics.	

AB: 2.7 to 2.9	
PRACTICALS	1 credit
Regular Experiments: Group B	
Frequency of A.C. Mains	
2. Spectrometer (Angle of Prism)	
3. Combination of lenses	
4. Newton's ring / Wedge shaped film	
5. NAND, NOR gates as Universal Building Blocks	
 6. EX-OR gate, Half Adder & Full Adder	

References

- 1. Nuclear Physics An Introduction by S. B Patel (SBP)
- 2. Atomic and Nuclear Physics N Subramanyam, Brijlal & Seshan(BSS)
- 3. Concepts of Modern Physics by Arthur Beiser (AB)

Additional References:

- 1. Atomic Physics by S. N Ghoshal
- 2. Nuclear Physics by S. N Ghoshal
- 3. Atomic and Nuclear Physics A. B. Gupta and Deepak Ghosh
- 4. Basic Quantum Mechanics by Ajoy Ghatak
- 5. Elements of x-ray diffraction by B. D Cullity

RUIA COLLEGE Explore • Experience • Excel

SEMESTER-II

Course Code: RUSPHY201

Course Title: Mathematical Physics & Mechanics Academic year 2019-20

Learning Objectives: After successful completion of this course, students would acquire the following knowledge & skills:

- 1. The ability to apply the principles of physics to solve innovative and unfamiliar problems
- 2. The ability to explore and deduce quantitative results in the extents of physics
- 3. The ability to use contemporary experimental apparatus and analysis tools to acquire, analyze and interpret scientific data
- 4. The ability to communicate scientific results effectively in presentations or posters
- A comprehensive, quantitative and conceptual understanding of the core areas of physics, including mechanics, optics, modern physics, thermodynamics, electrostatics at a level attuned with graduate programs in physics at peer institutions

Learning Outcomes:

After successful completion of this course, student will be able to:

- 1. Understand the basic mathematical concepts and applications of them in physical situations.
- 2. Demonstrate quantitative problem solving skills in all the topics covered

	SEMESTER II	
Course Code	Title	Credits
RUSPHY201	Mathematical Physics & Mechanics	2
Unit I	Vector algebra and Vector calculus	15 lectures
	Vector and Scalars: Vectors, Scalars, Vector algebra, Laws of Vector algebra, Unit vector, Rectangular unit vectors, Components of a vector, Scalar fields, Vector fields, Problems based on Vector algebra. Dot or Scalar product, Cross or Vector product, Commutative and Distributive Laws, Scalar Triple product, Vector Triple product (Omit proofs). Problems and applications based on Dot, Cross and Triple products. MS: Ch. 1, 2(Omit Reciprocal sets of vectors)	

	Gradient, divergence and curl: The ∇ operator, Definitions and physical significance of Gradient, Divergence and Curl; Distributive Laws for Gradient, Divergence and Curl (Omit proofs); Product Rule Problems based on Gradient, Divergence and Curl, product Rules MS: Ch. 4 (Omit formulae no 4 to 12 involving ∇ and Invariance)	
Unit II	Differential equations and Transient response of circuits	15 lectures
	Differential equations: Introduction, Ordinary differential equations, First order homogeneous and non- homogeneous equations with variable coefficients, exact differentials, and General first order Linear Differential Equation, Second-order homogeneous equations with constant coefficients. Problems depicting physical situations like LC and LR circuits, Simple Harmonic motion (spring mass system) CH: 5.1, 5.2, 5.2.1 (A, B, C) (Omit D), 5.2.3 Transient response of circuits: Series LR, CR, LCR	
	circuits. Growth and decay of currents/charge CR: 14.1, 14.2, 14.3	
Unit III	Harmonic Oscillations and Wave Motion	15 lectures
R Explo	Composition of two Collinear Harmonic Oscillations: Linearity & Superposition Principle. Superposition of two Collinear Oscillations having (i) equal frequencies, and (ii) different frequencies (Beats) Superposition of two mutually perpendicular harmonic oscillations: Graphical & Analytical methods, Lissajous figures with equal & unequal frequencies; its uses.	
	Wave Motion: Transverse waves on string, Travelling & Standing waves on a string, Normal modes of a string; Group velocity, Phase velocity, plane waves, spherical waves, wave intensity; Problems from all topics. SPP: 2.4.1, 2.4.3, 2.4.4, 2.4.1, 2.3.4 FC: 1.5	

PRACTICALS	1 credit
 Demonstration Experiments: Use of Cathode Ray Oscilloscope (or Digital Storage Oscilloscope) Conservation of Angular Momentum Laser Beam Divergence, Intensity Charging Discharging of a Capacitor Use of PC for graph Plotting Light Dependent Switch Clipper & Clamper Circuits 5 minimum demo-experiments should be reported in journal 	
Regular Experiments: Group A	
Zener diode as Regulator	
2. Surface Tension	
3. Spectrometer (Minimum Angle of deviation & μ)	
4. LDR Characteristics	
5. Verification of Stefan's law	

References:

- Schaum's outline of Theory and problems of Vector Analysis Murray Spiegel (MS)
- 2. Fundamentals of Vibrations & Strings by S. P Puri (SPP)
- 3. Berkeley Physics Course, vol. 3, Francis Crawford (FC)
- 4. Electricity and Magnetism by D. Chattopadhaya & P. C. Rakshit (CR)

Additional References:

- 1. The Physics of Vibrations and Waves, H. J. Pain, 2013, John Wiley and Sons.
- 2. The Physics of Waves and Oscillations, N.K. Bajaj, 1998, Tata McGraw Hill.
- 3. Additional References:
- 4. Brijlal, N. Subrahmanyam, Jivan Seshan, Mechanics and Electrodynamics, , (S. Chand) (Revised & Enlarged ED. 2005)
- 5. A K Ghatak, Chua, Mathematical Physics, 1995, Macmillan India Ltd.
- 6. Ken Riley, Michael Hobson and Stephen Bence, Mathematical Methods for Physics and Engineering, Cambridge (Indian edition).
- 7. H. K. Dass, Mathematical Physics, S. Chand & Co.
- 8. Jon Mathews & R. L. Walker, Mathematical Methods of Physics: W A Benjamin Inc

Course Code: RUSPHY202

Course Title: Electronics Academic year 2019-20

Learning Objectives: After successful completion of this course, students would acquire the following knowledge & skills:

- 6. The ability to apply the principles of physics to solve innovative and unfamiliar problems
- 7. The ability to explore and deduce quantitative results in the extents of physics
- 8. The ability to use contemporary experimental apparatus and analysis tools to acquire, analyze and interpret scientific data
- 9. The ability to communicate scientific results effectively in presentations or posters
- 10. A comprehensive, quantitative and conceptual understanding of the core areas of physics, including mechanics, optics, modern physics, thermodynamics, electrostatics at a level attuned with graduate programs in physics at peer institutions

Learning Outcomes:

After successful completion of this course, a student will be able to:

- 1. Understand the details of electronics
- 2. Understand the working of various electronic equipments used in day-to-day life
- 3. Understand the working behind Logic Gates

	SEMESTER II	
Course Code	Title	Credits
RUSPHY202	Electronics	2
Unit I	Circuit theorems and Alternating Current	15 lectures
EXPIC	Circuit theorems: Thevenin's theorem, Norton theorem, Reciprocity theorem, Maximum power transfer theorem. CR: 7.7, 7.8, 7.9, 7.10, 7.11	EXCE
	Alternating Current: Sinusoid, Ac response of a Resistance, Inductance and a capacitance, Representation of sinusoids by complex numbers, sinusoidal voltage to series RL circuit, sinusoidal voltage to series RC circuit, sinusoidal voltage to series RLC circuit, Series and parallel resonance. CR: 15.1, 15.2, 15.5, 15.6, 15.7, 15.8, 15.9, 15.11	

Unit II	Rectifier Circuit and Transistor as an amplifier	
	Rectifier Circuit: (Half wave and Full wave rectifier: Review) Bridge rectifier: Efficiency and Ripple factor of Full wave Rectifier, Filter circuits: Types of filter circuits – capacitor filter, Voltage stabilization– Zener diode as voltage stabilizer. VKM: 9.10 to 9.20, 9.22, 9.23	
	Transistor as an amplifier: Definition of gain α , β (dc ∾) and relation between them, CE amplifier: operation, Load line Analysis, operating point, cut off and saturation points. VKM: 11.7 to 11.17, 11.21	
Unit III	Digital electronics and binary algebra	
	Digital electronics: Review of Logic Gates; Boolean algebra, Boolean Theorems, De-Morgan's Theorems, NAND & NOR as Universal Building blocks. EX-OR gate: Implementation of basic gates using NAND & NOR gates and their applications: Controlled inverter, Half Adder, Full adder. Problems VKM: 28.8 to 28.14, 28.19; LM: 6.7	
R	Binary number system, Arithmetic building blocks, Types of registers. Number system: Decimal, binary, hexadecimal number system and their mutual conversions. Digital Principles and Applications – Donald Leach, A Malvino, Goutam Saha (13th Edition): 5.2 to 5.5, 5.7	E
Explo	Binary addition, binary subtraction, unsigned Binary numbers, Sign-magnitude Numbers, 2's compliment representation and 2's compliment arithmetic: addition and subtraction. Digital Principles and Applications – Donald Leach, A Malvino, Goutam Saha (13th Edition): 6.1 to 6.6	Exce

PRACTICALS	1 credit
Regular Experiments: Group B	
1. LR Circuit	
2. CR Circuit	
3. Thevenin's Theorem	
4. Norton's Theorem	
5. Bridge Rectifier – Load Regulation	

References:

- 1. Electricity and Magnetism by D. Chattopadhaya & P. C. Rakshit (CR)
- 2. Principles of Electronics V. K. Mehta & Rohit Mehta (VKM)
- 3. Digital Principles and Applications Leach & Malvino (LM)

Additional References:

- 1. Digital Principles and Applications by Leach & Malvino
- 2. Digital Electronics by Tolkheim

MODALITY OF ASSESSMENT

Theory Examination Pattern:

A) Internal Assessment - 40% of 100 marks=:40 marks.

Sr No	Evaluation type	Marks
1	One Assignment/Case study/Project	10
2	One class Test (multiple choice questions / objective)	20
3	Active participation in routine class instructional deliveries (case studies/ seminars/presentation)	05
4	Overall conduct as a responsible student, manners, skill in articulation, leadership qualities demonstrated through organizing co-curricular activities, etc.	05

B) External examination - 60 % of 100 marks

Semester-end Theory Assessment - 60 marks

- Duration These examinations shall be of 2 hours duration.
- ii. Paper Pattern:

All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions on
Q.1)A)	Any 2 out of 3	12	Unit I
Q.1)B)	Any 2 out of 4	04	PYCE
Q.2)A)	Any 2 out of 3	12	Unit II
Q.2)B)	Any 2 out of 4	04	
Q.3)A)	Any 2 out of 3	12	Unit III
Q.3)B)	Any 2 out of 4	04	
Q.4)	Any 3 out of 5	12	Unit I,II,III
Total marks		60	

Practical Examination Pattern:

(A) Internal Examination:

Heading	Mark
Journal	05
Test-skill	10
Participation	05
Total	20

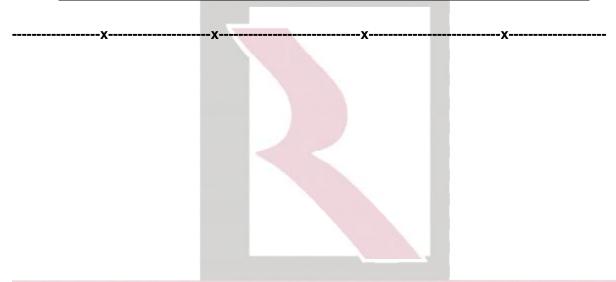
(B) External (Semester-end practical examination):

Particulars		Practical 1	
Laboratory work	1	25	
Viva		5	
Total		30	

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-coordinator / In charge of the department; failing which the student will not be allowed to appear for the practical examination.


Overall Examination and Marks Distribution Pattern

Semester L

Course	101			102			Grand
							Total
	Internal	External	Total	Internal External Total			
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

Semester II

Course	201			202			Grand
							Total
	Internal	External	Total	Internal External Total			
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

RUIA COLLEGE Explore Experience Excel