# S.P. Mandali's

# **Ramnarain Ruia Autonomous College**

(Affiliated to University of Mumbai)



Syllabus for A.C. (E.I.)

**Program: BSc** 

## **Program Code: Physics (RUSACEI)**

(Credit Based Semester and Grading System with effect from the academic year 2020-21)



## **PROGRAM OUTCOMES**

| РО   | PO Description                                                             |
|------|----------------------------------------------------------------------------|
|      | A student completing Bachelor's Degree in Physics program                  |
|      | will be able to:                                                           |
| PO 1 | Recall and explain acquired scientific knowledge in a comprehensive        |
|      | manner and apply the skills acquired in their chosen discipline. Interpret |
|      | scientific ideas and relate its interconnectedness to various fields in    |
|      | science.                                                                   |
| PO 2 | Evaluate scientific ideas critically, analyse problems, explore options    |
|      | for practical demonstrations, illustrate work plans and execute them,      |
|      | organise data and draw inferences                                          |
| PO 3 | Explore and evaluate digital information and use it for knowledge          |
|      | upgradation. Apply relevant information so gathered for analysis and       |
|      | communication using appropriate digital tools.                             |
| PO 4 | Ask relevant questions, understand scientific relevance, hypothesize a     |
|      | scientific problem, construct and execute a project plan and analyse       |
|      | results.                                                                   |
| PO 5 | Take complex challenges, work responsibly and independently, as well       |
|      | as in cohesion with a team for completion of a task. Communicate           |
|      | effectively, convincingly and in an articulate manner.                     |
| PO 6 | Apply scientific information with sensitivity to values of different       |
|      | cultural groups. Disseminate scientific knowledge effectively for          |
|      | upliftment of the society.                                                 |
| PO 7 | Follow ethical practices at work place and be unbiased and critical in     |
| K    | interpretation of scientific data. Understand the environmental issues     |
|      | and explore sustainable solutions for it.                                  |
| PO 8 | Keep abreast with current scientific developments in the specific          |
|      | discipline and adapt to technological advancements for better              |
|      | application of scientific knowledge as a lifelong learner                  |



## **PROGRAM SPECIFIC OUTCOMES**

| PSO   | Description                                                                                                                                                                                                                                     |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | A student completing Bachelor's Degree in BSc program in the                                                                                                                                                                                    |
|       | subject of Physics with AC-electronic Instrumentation will be                                                                                                                                                                                   |
|       | able to:                                                                                                                                                                                                                                        |
| PSO 1 | To demonstrate procedural knowledge related to different areas of<br>study in Physics including electronic Instrumentation, C++<br>programming, and Nano-materials at a level attuned with graduate<br>programs in physics at peer institutions |
| PSO 2 | To demonstrate comprehensive, quantitative and conceptual<br>understanding of the core areas of physics and AC-electronic<br>Instrumentation.                                                                                                   |
| PSO 3 | To apply the principles and acquired skill-set related to physics and AC-<br>electronic Instrumentation, to handle innovative and unfamiliar<br>problems, so that effective solution or strategy to deal with, could be<br>developed.           |
| PSO 4 | The ability to explore and deduce quantitative results in the extents of AC-electronic Instrumentation.                                                                                                                                         |
| PSO 5 | The ability to use contemporary experimental apparatus and analysis tools to acquire, analyse and interpret scientific data in the extents of AC-electronic Instrumentation.                                                                    |
| PSO 6 | The ability to communicate scientific results effectively in presentations or posters in the extents of physics and AC-electronic Instrumentation.                                                                                              |
| PSO 7 | Utilize acquired ICT skills, electronic-instrumentation related practical skills, mathematical skills to prepare for employment, for advancement of a career path and also for lifelong learning in electronic instrumentation.                 |



## **PROGRAM OUTLINE**

| V | RUSACEI 501 | ANOLOG CIRCUITS and<br>NANOMATERIAL-I<br>Unit I :Measuring Instruments | R<br>0                                                                                                                                          |
|---|-------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|   |             | Unit I :Measuring Instruments                                          | 0                                                                                                                                               |
|   |             |                                                                        |                                                                                                                                                 |
|   |             | Unit II :Signal conditioning and Power Supplies                        | 02                                                                                                                                              |
|   |             | Unit III :Analysis Techniques-I                                        |                                                                                                                                                 |
|   |             | Unit IV :Nano-materials-I                                              | 1                                                                                                                                               |
|   | Prac        | ticals based on above course<br>RUSACEI 5P1                            | 02                                                                                                                                              |
|   |             | Total                                                                  | 04                                                                                                                                              |
|   |             | <br>Prac                                                               | Supplies         Unit III :Analysis Techniques-I         Unit IV :Nano-materials-I         Practicals based on above course         RUSACEI 5P1 |

| YEAR    | SEM | COURSE CODE | TITLE                                                              | Credits |
|---------|-----|-------------|--------------------------------------------------------------------|---------|
| 2020-21 | VI  | RUSACEI 601 | C++ PROGRAMING AND<br>NANOMATERIAL-II                              |         |
|         |     | Ro          | Unit I : Basic Concepts of Object Oriented<br>Programming in C++-I |         |
|         | 5   |             | Unit II : Programming in C++-II                                    | 02      |
|         | 3   |             | Unit III :Analysis Techniques-II                                   |         |
|         |     |             | Unit IV :Nano-materials-II                                         |         |
| 00      |     | Prac        | ticals based on above course<br>RUSACEI 6P1                        | 02      |
|         |     |             | Total                                                              | 04      |



### Semester-V

### Course Code: RUSACEI501

### Course Title: Analog Circuits and Nano materials - I

### Academic year 2020-21

### **COURSE OUTCOMES:**

| COURSE<br>OUTCOME | DESCRIPTION                                                                                                                                                                                           |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO 1              | Distinguish different actual circuits used in CRO                                                                                                                                                     |
| CO 2              | Compare the Transistor Voltmeter and Op Amp used Solid State<br>Voltmeter. Differentiate two methods of D TO A Converters.                                                                            |
| CO 3              | Distinguish the need of Operational Amplifier in active filter. Compare the functions of Active filters. Demonstrate the bode plots of all cases. Compare the performances of different power supply. |
| CO 4              | Differentiate between the different spectroscopy techniques                                                                                                                                           |
| CO 5              | Demonstrating the analysis of the raw data                                                                                                                                                            |
| CO 6              | Compare and study of different properties of Nano materials.                                                                                                                                          |
| C07               | Demonstrate quantitative problem solving skills in all the topics covered                                                                                                                             |

### DETAILED SYLLABUS

| Course Code  |      | Title                                                            | Credits  |
|--------------|------|------------------------------------------------------------------|----------|
| RUSAC EI 501 | Unit | Analog Circuits and Nano materials - I                           |          |
|              |      | Measuring Instruments:                                           | 15       |
|              |      | (i) Cathode Ray Oscilloscope:                                    | lectures |
| 00.          |      | Introduction, CRO block diagram, CRT connection, Vertical        |          |
|              |      | amplifier, Basic function of sweep generator, Horizontal         |          |
|              |      | deflection system, Triggered sweep, Trigger Pulse, Delay         |          |
|              |      | line. Probes: - 1:1 probe, 10:1 probe, Attenuators               |          |
|              |      | (Uncompensated and Compensated), Dual trace CRO                  |          |
|              |      | Ref. K: 7.1, 7.4, 7.12, 7.6, 7.3.1, 7.7, 7.8, 7.9, 7.10, 7.28.1, |          |
|              |      | 7.28.2, 7.29, 7.29.1, 7.29.2 & 7.15                              |          |
|              |      | (ii) Analog Electronic Multimeter:                               |          |



|          | T   |                                                                                       | 1        |
|----------|-----|---------------------------------------------------------------------------------------|----------|
|          |     | Transistor voltmeter, Solid state (Op Amp based) voltmeter                            |          |
|          |     | Ref. K: 4.7 & 4.9                                                                     |          |
|          |     | (iii) Digital Instruments: D/A Conversion, Variable                                   |          |
|          |     | (weighted) resistor and Binary Ladder (4bit) type D/A                                 |          |
|          |     | Converters.                                                                           |          |
|          |     | Ref. M&L: 12.1 & 12.2                                                                 |          |
|          |     | <b>DMM</b> , 3 <sup>1</sup> / <sub>2</sub> Digit, resolution and sensitivity, general |          |
|          |     | specification                                                                         | 0        |
|          |     | Ref. K: 6.2, 5.8, 5.9 & 5.10.                                                         |          |
| Unit II  | II  | a) Instrumentation Amplifier & its applications:                                      | 15       |
|          |     | Basic Instrumentation Amplifier, Instrumentation system,                              | lectures |
|          |     | Applications of Instrumentation Amplifier, Temperature                                | lectures |
|          |     | indicator, light intensity meter, analog weight scale.                                |          |
|          |     | Ref. K: 14.3, 14.3.2, 14.4, 14.4.1, 14.4.2, 14.4.3                                    |          |
|          |     |                                                                                       |          |
|          |     | b) Active filters:                                                                    |          |
|          |     | Introduction, Active Filters, 2nd order Low Pass                                      |          |
|          |     | Butterworth filter, 2nd order High Pass Butterworth filter,                           |          |
|          |     | Band pass Filters, wide band pass filter, wide band                                   |          |
|          |     | rejection filter and narrow band rejection filter.                                    |          |
|          |     | Ref. G: 7.1, 7.2, 7.4, 7.6, 7.7, 7.8, 7.8.1, 7.9.1 & 7.9.2                            |          |
|          |     | c) Power Supplies                                                                     |          |
|          |     |                                                                                       |          |
|          |     | i) Principle, block diagram, working, important                                       |          |
|          |     | specifications and operating procedures for- Fixed voltage                            |          |
|          |     | power supply, variable power supply, dual power supply,                               |          |
|          |     | CV and CC supply, SMPS, DC to DC converter, UPS.                                      |          |
|          |     | Ref. B. S. Sonde, Power Supplies, TMH                                                 |          |
|          |     | ii) Linear and switching regulators                                                   |          |
|          |     | Fixed output voltage regulator with current booster.                                  |          |
|          |     | Ref. C & D: 16.11, 16.12, 16.1 M: 24.5                                                |          |
|          |     | iii) Constant current source (ground load) using OP-Amp                               |          |
|          |     | and pnp transistor-Ref C & D: 5.5.2                                                   |          |
|          | V.  | iv) Basic and Monolithic Switching regulators (buck, boost                            |          |
|          |     | and buck – boost) (Only basic Configurations) Ref M: 24.7                             |          |
|          |     |                                                                                       |          |
| Unit III | 111 | Analysis Techniques-I                                                                 | 15       |
|          |     | 1. Optical spectroscopy: Optical absorption                                           | lectures |
|          |     | spectroscopy, photoluminescence, FTIR, Raman                                          | iectures |
|          |     | spectroscopy                                                                          |          |
|          |     | 2. Electron spectroscopy: XPS, Ultraviolet photo                                      |          |
|          |     | spectroscopy                                                                          |          |
|          |     | 3. Rutherford back scattering spectroscopy(RBS)                                       |          |
|          |     | 4. Secondary ion mass spectroscopy(SIMS)                                              |          |
| L        |     |                                                                                       |          |



| Unit IV | IV | i) Properties of Nanomaterial                                                                                           | 15           |
|---------|----|-------------------------------------------------------------------------------------------------------------------------|--------------|
|         |    | Introduction, Mechanical properties, Structural properties,<br>Melting of nanoparticles, Electric conductivity, Optical | lectures     |
|         |    | Properties, Magnetic Properties.                                                                                        |              |
|         |    | Ref. SK: 7.1, 7.2, 7.3, 7.4, 7.5, 7.6 & 7.7                                                                             |              |
|         |    | ii) Nanolithography                                                                                                     | $\mathbf{O}$ |
|         |    | Introduction, Lithography using photon, Lithography using                                                               |              |
|         |    | particle beams, Scanning probe lithography, Soft                                                                        | 50           |
|         |    | lithography.                                                                                                            |              |
|         |    | Ref. SK: 8.1, 8.2, 8.3, 8.4 & 8.5.                                                                                      |              |

### **References:**

1. Basic Electronics and Linear Circuits by N. N. Bhargava, D. C. Kulshreshtha and S. C. Gupta.

Technical Teachers training Institute, Tata McGraw Hill Publishing Company Limited.(BKG)

- 2. Modern Electronic Instrumentation & Measurement Techniques by Albert D. Helfrick & William
- D. Cooper (PHI) Edition. (H & C)
- 3. Electronic Instrumentation by H. S. Kalsi, 2nd Edition, Tata McGraw Hill.(K)
- 4. Digital electronics by G. L. Tokheim (6th Editon) (Tata Mc Graw Hill)(T)
- 5. "OPAMPs and linear integrated circuits" by Coughlin & F. F. Driscoll (6th Edition), Eastern Economy Education, PHI(C & D)
- 6. OPAMPs & linear integrated circuits by R. A. Gayakwad, (4th Edition, PHI)(G)
- 7. "Electronic Principles" by A. P. Malvino (6th edition, PHI).(M)
- 8. Digital Principle & Applications" by Malvino& Leach (6th edition, TMH) (M & L)

### Additional Reference:

1. The Art of Electronics, by Paul Horowitz & Winfield Hill (2nd Edition) (H & H)

### **References (Nano materials)**

- 1. Nanotechnology, Principles & Practices by Sulabha Kulkarni(SK)
- 2. Introduction to Nanotechnology by C.P.Poole, Jr. and F.J.Owens
- 3. Instrumental Methods of Analysis by H.H.Willard, I.I. Merit & J.A.Dean
- 4. X-ray structure Determination by G.H.Stout and I.H.Jensen
- 5. Fundamentals Of Molecular Spectroscopy by C .Banwell and McCash
- 6. Nanomaterial by A.K. Bandyopadhyay



### PRACTICAL SEM V

### RUSACEI5P1 – Analog Circuit & Instruments & Analysis techniques – I

### The certified journal must contain a minimum of 8 regular experiments (6 from Group A

experiments and 2 experiments from Group B, 1 each from sub-group B1 and B2 )

A separate index and certificate in journal is must for each semester course.

- > Internal component of Practical examination Evaluation is based on regular experiments.
- > For external practical examination, the learner will be examined in one experiment.

A learner will be allowed to appear for the semester end practical examination only if he/she submits a certified journal of Physics.

### **Group A**

- Basic Instrumentation Amplifier using 3 Op-Amps couple to Resistance Bridge (C&D Ch. 8)
- Second Order active Low Pass/High Pass filter (frequency response & phase relation) (K.Ch15)
- 3. Active Notch Filter (frequency response & phase relation) (K.Ch.15)
- 4. Diode ROM array
- 5. Adjustable constant Current Source using LM 317 (C&D Ch. 14)
- Constant Current source using OPAMP and PNP transistor (o/p current less than 50 mA) (C&D Ch. 5)

### **GROUP B**

- B1: 1. Synthesis of Graphene & Graphene oxide
  - 2. Synthesis of porous silicon
  - 3. Synthesis of nanomaterial using electrochemical techniques
- **B2:** 1. Characterization study of nanomaterial & study of sensors of semiconductor materials(powder)
  - 2. Characterization study of nanomaterial (powder) using XRD techniques.
  - 3. Characterization study of nanomaterial (powder) using UV techniques.
  - 4. Characterization study of nanomaterial (powder) using FTIR techniques.
  - 5. Characterization study of nanomaterial (powder) using RAMAN techniques.



#### References: Group A & B

1. H&C: Modern Electronic Instrumentation & Measurement Techniques by Albert D. Helfrick & William D. Cooper PHI) Edition

- 2. C&D: "OPAMPs and linear integrated circuits" by Coughlin & F. F. Driscoll(6th ed. PHI)
- 3. G: OPAMPs and linear integrated circuits by R.A. Gayakwad (4th edition, PHI)
- 4. M: "Electronic Principles" by A. P. Malvino (6th edition, PHI)
- 5. K: Electronic Instrumentation by H. S. Kalsi (TMH) 2nd Edition
- 6. M&L: Digital Principle and Applications" by Malvino and Leach (5th edition, TMH)
- 7. RPJ: Modern Digital Electronics 3rd edition (TMH) R .P. Jain
- 8. Nanotechnology, Principles & Practices by Sulabha Kulkarni

### MODALITY OF ASSESSMENT

#### Semester---- V

#### **Theory Examination Pattern**

### A) Internal Assessment (40%) = 40 marks.

| Theory Paper-Paper | Test  | Assignment           | Marks distribution  | Total     |
|--------------------|-------|----------------------|---------------------|-----------|
| code               | Marks |                      |                     | Marks per |
|                    |       | <u>10</u>            |                     | paper     |
| Applied Component  | 20    | 15 Questions         | Assessment- 15 mark | 40        |
| Electronics -      | 7     | on units 1, 2, 3 ,4. | Viva on it05 mark   |           |
| Instrumentation    |       |                      |                     |           |
| RUSACEI501         | 0     |                      | Total= 20 mark      |           |

B) Internal test pattern (half an hour test ) = 20 marks

| Questions | Options                                                               | Marks |
|-----------|-----------------------------------------------------------------------|-------|
| Q.1       | 20 objective questions, all compulsory, each question with 4 options; | 10    |
| Ko        | (half mark each )                                                     |       |
| Q.2       | Attempt any two numerical out of four.(3 marks each)                  | 06    |
| Q.3       | Attempt any one numerical out of two.(4 marks each)                   | 04    |
|           | Total marks                                                           | 20    |



### C) External examination = ( 60 % ) = 60 Marks

### Semester End Theory Assessment - 60 Marks

- i. Duration These examinations shall be of **2 hours** duration.
- ii. Paper Pattern- All questions shall be compulsory with internal choice within the questions.

| Questions | Options        | Marks | Questions on |
|-----------|----------------|-------|--------------|
| Q.1)A)    | Any 1 out of 2 | 6     | Unit I       |
| Q.1)B)    | Any 1 out of 2 | 6     |              |
| Q.2)A)    | Any 1 out of 2 | 6     | Unit II      |
| Q.2)B)    | Any 1 out of 2 | 6     | 5            |
| Q.3)A)    | Any 1 out of 2 | 6     | Unit III     |
| Q.3)B)    | Any 1 out of 2 | 6     |              |
| Q.4)A)    | Any 1 out of 2 | 6     | Unit IV      |
| Q.4)B)    | Any 1 out of 2 | 6     |              |
| Q.5)A)    | Any 1 out of 2 | 3     | Unit I       |
| Q.5)B)    | Any 1 out of 2 | 3     | Unit II      |
| Q.5C)     | Any 1 out of 2 | 3     | Unit III     |
| Q.5)D)    | Any 1 out of 2 | 3     | Unit IV      |

### Practical Examination Pattern (Sem V)

(A) Internal Examination:

| Sr.      | Activity                                                     | Practical-(AC EI) |
|----------|--------------------------------------------------------------|-------------------|
| No.      |                                                              | (Marks)           |
| 1.       | Seminar on experiment :                                      | 8                 |
|          | Content- 2 mark                                              |                   |
|          | Presentation-2 mark                                          |                   |
|          | Q(Teacher)2 mark                                             |                   |
| <b>N</b> | Q(Student) -2 mark                                           |                   |
| 2.       | Continuous Assessment (3 mark/ experiment/ 8 regular expt.)  | 24                |
| 3.       | Main Journal (1 mark per experiment)                         | 8                 |
|          | Total (=1 +2+ 3)                                             | 40                |
|          | 8 experiments as follows:-                                   |                   |
|          | Group A- 6 experiments ,Group B- 1 experiment each from sub- |                   |
|          | group B1 and B2                                              |                   |



| Particulars     | Practical |
|-----------------|-----------|
|                 | (Marks)   |
| Laboratory work | 50        |
| Viva            | 10        |
| Total           | 60        |

### (B) External (Semester-end practical examination):

#### PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ coordinator / In-charge of the department; failing which the student will not be allowed to appear for the practical examination.

### **Overall Examination and Marks Distribution Pattern**

| Theory Course Marks distribution |                     |                     |                  |
|----------------------------------|---------------------|---------------------|------------------|
|                                  | Internal<br>(Marks) | External<br>(Marks) | Total<br>(Marks) |
| RUSACEI501                       | 40                  | 60                  | 100              |

| Practical Course |          | Marks distribution | on      |
|------------------|----------|--------------------|---------|
|                  | Internal | External           | Total   |
| RUSACEI5P1       | (Marks)  | (Marks)            | (Marks) |
|                  | 40       | 60                 | 100     |

#### (GRAND TOTAL MARKS 200)



### Semester-VI

### Course Code: RUSAC EI 601

### Course Title: C++ Programming and Nanomaterials-II

### Academic year 2020-21

### **COURSE OUTCOMES:**

| COURSE<br>OUTCOME | DESCRIPTION                                                                         |
|-------------------|-------------------------------------------------------------------------------------|
| CO 1              | Analyse the problem, design the flow chart for the problem                          |
| CO 2              | Formulation of C++ program                                                          |
| CO 3              | Understand object orientated programming (OOP)and apply the concept for programming |
| CO 4              | Distinguish between several Nano magnetic techniques.                               |
| CO 5              | Formulate the different parameters from XRD, SEM, TEM, etc.                         |
| CO 6              | Explore the application of Nanomaterials in different field.                        |
| C07               | Differentiate between special Nanomaterials CNT's, porous silicon and Aerogels.     |

### DETAILED SYLLABUS

| Course Code |      | Title                                                                                                                                                                                                      | Credits        |
|-------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| RUSACEI 601 | Unit | C++ PROGRAMING AND NANOMATERIAL-II                                                                                                                                                                         |                |
| Unit I      | 1    | Basic Concepts of Object Oriented Programming and C++                                                                                                                                                      | 15<br>Lectures |
| 00          |      | (1) Basics of Object-Oriented Programming &<br>Beginning with C++:                                                                                                                                         |                |
|             |      | A look at Procedure-Oriented Programming, Object-<br>Oriented Programming Paradigm, Basic concepts of<br>Object-Oriented Programming, Benefits of OOP, Object-<br>Oriented Languages, Applications of OOP. |                |
|             |      | What is C++?, Applications of C++, A simple C++ program,<br>More C++ Statements, Example with Class, Structure of<br>C++ Program, Creating the Source File, Compiling and                                  |                |



|          |     | Linking.<br>Ref EB: 1.3, 1.4, 1.5, 1.6, 1.7 & 1.8<br>EB: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 & 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
|----------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Unit II  |     | <ul> <li>(2) Tokens and Expressions in C++:<br/>Introduction, Tokens, Keywords, Identifiers and Constants,<br/>Basic Data Types, User- Defined Data Types, Derived<br/>Data Types, Symbolic Constants, Type Compatibility,<br/>Declaration of Variables, Dynamic Initialization of<br/>Variables, Reference Variables, Operators in C++, Scope<br/>Resolution Operator, Member Dereferencing Operators,<br/>Memory Management Operators, Manipulators, Type Cast<br/>Operator, Expressions and Their Types, Special<br/>Assignment Expressions, Implicit Conversions, Operator<br/>Overloading, Operator Precedence.<br/>Ref EB: 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11,<br/>3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18, 3.19, 3.20, 3.21,<br/>3.22 &amp; 3.23</li> <li>(3) Control Structures and Functions:<br/>Control Structures, Functions: The Main Function, Function<br/>Prototyping, Call by Reference, Return by Reference,<br/>Inline Functions, Default Arguments, Constant Arguments,<br/>Function Overloading, Math Library Functions.<br/>Ref EB: 3.24,4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9 &amp;<br/>4.11</li> </ul> | 15<br>Lecture |
| Unit III |     | Analysis techniques – II<br>i) XRD, Small angle X – ray scattering (SAXS), Low energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15<br>Lecture |
| 836      | No. | electron diffraction (LEED)<br>ii) Electron Microscopy : SEM, EDAX, TEM, Environmental<br>TEM<br>iii) SPM, AFM, STM<br>iv) Nano magnetic techniques : Super conducting quantum<br>interface device measurement (SQUID), Magneto<br>resistance measurement technique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |
| Unit IV  | IV  | <ul> <li>i) Some Special Nanomaterial</li> <li>Introduction, Carbon nanotubes (CNTs), Porous Silicon,</li> <li>Aerogels, Zeolites, Ordered Porous Materials Using</li> <li>Micelles as Templates.</li> <li>Ref. SK: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6.</li> <li>ii) Applications of nanomaterial</li> <li>Introduction, Electronics, Energy, Automobiles, Sports and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15<br>Lecture |



| Toys, Textiles, Cosmetics, Domestics Appliances,         |  |
|----------------------------------------------------------|--|
| Biotechnology and Medical Field, Space and Defense,      |  |
| Nanotechnology and Environment.                          |  |
| Ref. SK: 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, |  |
| 10.9, 10.10, 10.11.                                      |  |

### References: C++ Programming

1. Object Oriented Programming with C++ by E Balagurusamy, Third /Fourth Edition, Tata McGraw-Hill Publishing Company Limited. (**EB**)

### Additional references:

- 1) Programming with C++ by D. Ravichandran, Tata McGraw-Hill Publ. Company Ltd.
- 2) Starting out with C++ by Tony Gaddis, Third Edition, Addison Wesley Publishing Company

#### **References : Nanomaterial**

- 1. Nanotechnology, Principles & Practices by Sulabha Kulkarni (S K)
- 2. Introduction to Nanotechnology by C.P. Poole, Jr. and F. J. Owens
- 3. Instrumental Methods of Analysis by H.H. Willard, I.I. Merit & J.A. Dean
- 4. X ray Structure Determination by G.H. Stout and I.H. Jensen
- 5. Fundamentals of Molecular Spectroscopy by C. Banwell and E. McCash
- 6. Nanomaterial by A.K. Bandyopadhyay



### PRACTICALS SEM VI

### RUSACEI 6P1 – Programming in C++ and Analysis techniques – II

# The certified journal must contain a minimum of 8 regular experiments (6 from Group A experiments and 2 experiments from Group B, one each from sub-group B1 and B2)

A separate index and certificate in journal is must for each semester course.

- Internal component of Practical examination Evaluation is based on regular experiments.
- For external practical examination, the learner will be examined in one experiment.

A learner will be allowed to appear for the semester end practical examination only if he/she submits a certified journal of Physics.

### Group A

### C++ Programming

- 1) Program based on Input, Output Statements (Programs to read any two numbers through keyboard and to perform simple arithmetic operations and to display the result)
- 2) Program based on Control Statements
  - a. Program based on if-else statement
  - b. Program based on nested if statement
- 3) Program based on for loop.
- 4) Program based on while loop and do-while loop.
- 5) Program using switch statements and if-else ladder.
- 6) Program to study function declaration, function calling and function prototype.

### **GROUP B**

#### **B1**

- 1. Synthesis of Graphene & Graphene oxide
- 2. Synthesis of porous silicon
- 3. Synthesis of nonmaterial using electrochemical techniques

#### **B2**

- 1. Characterization study of nanomaterial & study of sensors of semiconductor materials(powder)
- 2. Characterization study of nanomaterial (Thin film ) using XRD techniques.
- 3. Characterization study of nanomaterial (Thin film ) using UV techniques.
- 4. Characterization study of nanomaterial (Thin film ) using FTIR techniques.
- 5. Characterization study of nanomaterial (Thin film ) using RAMAN techniques.

### References: Group A & B

1. EB: Object Oriented Programming with C++ by E Balagurusamy, Third /Fourth Edition, Tata McGraw-Hill Publishing Company Limited.

2. Starting out with C++ by Tony Gaddis, Third Edition, Addison Wesley Publishing Company.

3.Nanotechnology, Principles & Practices by Sulabha Kulkarni

#### Additional references:

1) Programming with C++ by D. Ravichandran, Tata McGraw-Hill Publishing Company Limited.



### **MODALITY OF ASSESSMENT**

### Theory Examination Pattern (Sem-VI)

### B) Internal Assessment (40%) = 40 Marks.

| Theory Paper-Paper<br>code                                          | Test<br>Marks | Assignment                           | Marks distribution                                             | Total<br>Marks per<br>paper |
|---------------------------------------------------------------------|---------------|--------------------------------------|----------------------------------------------------------------|-----------------------------|
| Applied Component<br>Electronics -<br>Instrumentation<br>RUSACEI601 | 20            | 15 Questions<br>on units 1, 2, 3 ,4. | Assessment- 15 mark<br>Viva on it05 mark<br><br>Total= 20 mark | 40                          |

### B) Internal test pattern (half an hour test )= 20 marks

| Questions | options                                                                                  | Marks |
|-----------|------------------------------------------------------------------------------------------|-------|
| Q.1       | 20 objective questions , all compulsory, each question with 4 options; (half mark each ) | 10    |
| Q.2       | Attempt any two numerical out of four.(3 marks each)                                     | 06    |
| Q.3       | Attempt any one numerical out of two.(4 marks each)                                      | 04    |
|           | Total marks                                                                              | 20    |

### C) External examination = ( 60 % ) = 60 Marks

### Semester End Theory Assessment - 60 Marks

- iii. Duration These examinations shall be of **2 hours** duration.
- iv. Paper Pattern- All questions shall be compulsory with internal choice within the questions.

| Questions | Options Marks  |   | Questions on |
|-----------|----------------|---|--------------|
| Q.1)A)    | Any 1 out of 2 | 6 | Unit I       |
| Q.1)B)    | Any 1 out of 2 | 6 |              |
| Q.2)A)    | Any 1 out of 2 | 6 | Unit II      |
| Q.2)B)    | Any 1 out of 2 | 6 |              |
| Q.3)A)    | Any 1 out of 2 | 6 | Unit III     |
| Q.3)B)    | Any 1 out of 2 | 6 |              |
| Q.4)A)    | Any 1 out of 2 | 6 | Unit IV      |
| Q.4)B)    | Any 1 out of 2 | 6 |              |

20.

| Q.5)A) | Any 1 out of 2 | 3 | Unit I   |
|--------|----------------|---|----------|
| Q.5)B) | Any 1 out of 2 | 3 | Unit II  |
| Q.5C)  | Any 1 out of 2 | 3 | Unit III |
| Q.5)D) | Any 1 out of 2 | 3 | Unit IV  |

### Practical Examination Pattern (Sem-VI)

#### (A) Internal Examination:

| Sr. | Activity                                                | Practical-(AC – EI) |
|-----|---------------------------------------------------------|---------------------|
|     |                                                         |                     |
| No. |                                                         | (Marks)             |
| 4.  | Seminar on experiment :                                 | 8                   |
|     | Content- 2 mark                                         |                     |
|     | Presentation-2 mark                                     |                     |
|     | Q(Teacher)2 mark                                        |                     |
|     | Q(Student) -2 mark                                      |                     |
| 5.  | Continuous Assessment (3 mark per experiment/ 8 regular | 24                  |
|     | experiment))                                            |                     |
| 6.  | Main Journal (1 mark per experiment)                    | 8                   |
|     | Total (=1 +2+ 3)                                        | 40                  |
|     | 8 experiments as follows:-                              |                     |
|     | Group A- 6 experiments                                  |                     |
|     | Group B-1 experiment each from sub-group B1 and B2      |                     |

### (B) External (Semester-end practical examination):

| (Marks) |
|---------|
| 50      |
| 10      |
| 60      |
| -       |

#### PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ coordinator / In-charge of the department; failing which the student will not be allowed to appear for the practical examination.



### **Overall Examination and Marks Distribution Pattern**

| Semester | VI |
|----------|----|
|----------|----|

| Theory Course | Marks distribution |          |         |
|---------------|--------------------|----------|---------|
|               | Internal           | External | Total   |
| RUSACEI 601   | (Marks)            | (Marks)  | (Marks) |
|               | 40                 | 60       | 100     |
|               |                    |          |         |

| Practical Course |                     | Marks distribution  | <u>y</u>                |
|------------------|---------------------|---------------------|-------------------------|
| RUSACEI 6P1      | Internal<br>(Marks) | External<br>(Marks) | <b>Total</b><br>(Marks) |
|                  | 40                  | 60                  | 100                     |
|                  |                     | (GRAND TO           | TAL MARKS 200)          |
|                  | Rill                |                     |                         |
|                  |                     |                     |                         |
| ballin           |                     |                     |                         |
|                  |                     |                     |                         |