Resolution number: AC/II (20-21).2. RPS1

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Integrated M.Sc. in Bioanalytical Sciences

(Post-graduate syllabus)

Program Code: RPSBAS

(Credit Based Semester and Grading System for academic year 2020–2021)

PROGRAM OUTCOMES

РО	PO Description
	A student completing Bachelor's/Master's Degree in Science
	program will be able to:
PO 1	Demonstrate in depth understanding in the relevant science
	discipline. Recall, explain, extrapolate and organize conceptual
	scientific knowledge for execution and application and also to
	evaluate its relevance.
PO 2	Critically evaluate, analyze and comprehend a scientific problem.
	Think creatively, experiment and generate a solution independently,
	check and validate it and modify if necessary.
PO 3	Access, evaluate, understand and compare digital information from
	various sources and apply it for scientific knowledge acquisition as
	well as scientific data analysis and presentation.
PO 4	Articulate scientific ideas, put forth a hypothesis, design and execute
	testing tools and draw relevant inferences. Communicate the
	research work in appropriate scientific language.
PO 5	Demonstrate initiative, competence and tenacity at the workplace.
	Successfully plan and execute tasks independently as well as with
	team members. Effectively communicate and present complex
	information accurately and appropriately to different groups.
PO 6	Use an objective, unbiased and non-manipulative approach in
5	collection and interpretation of scientific data and avoid plagiarism
	and violation of Intellectual Property Rights. Appreciate and be
	sensitive to environmental and sustainability issues and understand
	its scientific significance and global relevance.
PO 7	Translate academic research into innovation and creatively design
	scientific solutions to problems. Exemplify project plans, use
	management skills and lead a team for planning and execution of a
	task.
PO 8	Understand cross disciplinary relevance of scientific developments
	and relearn and reskill so as to adapt to technological advancements.

PROGRAM SPECIFIC OUTCOMES

	Description	
	A student completing Integrated Master's Degree in Science	
	program in the subject of Bioanalytical Sciences will be able	
	to:	
PSO 1	Gain high quality science education in a vibrant academic ambience	
	with the faculty of distinguished teachers and scientists.	
PSO 2	Take up the challenge of doing quality research and teaching and	
	also contribute to industrial production and R & D in the fields of	
	Bioanalysis, Bioinformatics and Nutraceutical Sciences.	
PSO 3	Amalgamate classical analytical chemical techniques with modern	
	genomic and proteomic technologies of manufacturing and analysis	
	to better characterize the products useful as medicines as well as	
	nutraceuticals.	
nutraceuticals.		

PROGRAM OUTLINE

YEAR	SEM	COURSE CODE	COURSE TITLE	CREDITS
		RPSBAS701	Pharmaceutical	4
			Microbiology &	
			Pharmaceutical	20
			Manufacturing	100
		RPSBASP701	Practical	2
		RPSBAS702	Pharmacology & Toxicology	4
I. M.Sc. I	VII	RPSBASP702	Practical	2
		RPSBAS703	Extraction, Separation and	4
			Isolation of Analytes from	
			biological matrices	
		RPSBASP703	Practical	2
		RPSBAS704	Different systems of	4
		2111	Medicine & Regulations	
		RPSBASP704	Practical	2
		RPSBAS801	Molecular Biology & Tissue	4
	3		Culture	
0		RPSBASP801	Practical	2
		RPSBAS802	IPR, Drugs and Cosmetic Act	4
I. M.Sc. I	VIII		& Regulations	
		RPSBASP802	Practical	2
		RPSBAS803	Quality Management in	4
			Pharmaceutical Industry	

		RPSBASP803	Practical	2
		RPSBAS804	Pharmaceutical Testing & Proteomics	4
		RPSBASP804	Practical	2
		RPSBAS901	Automation and Data	4
			Management	100
		RPSBASP901	Practical	2
		RPSBAS902	Bioanalytical Techniques	4
I. M.Sc. II	IX	RPSBASP902	Practical	2
		RPSBAS903	Research Methodology and Biostatistics	4
		RPSBASP903	Practical	2
		RPSBASP904	Internship	6
		RPSBAS1001	Analytical Techniques and their Validation	4
	-	RPSBASP1001	Practical	2
	3	RPSBAS1002	Advances in Bioanalysis	4
I. M.Sc. II	X	RPSBASP1002	Practical	2
20,		RPSBAS1003	Clinical Research & Ethics	4
~		RPSBASP1003	Practical	2
		RPSBASP1004	Project Work	6

Course Title: Pharmaceutical Microbiology & Pharmaceutical Manufacturing

Academic year 2020-21

COURSE OUTCOMES

COURSE OUTCOME	DESCRIPTION
CO 1	Students will learn the applications of microbiology for testing quality of pharmaceutical products.
CO 2	Students will understand the norms required for manufacturing in pharmaceutical industry.
CO3	Students will be able to design and perform bioassays.

Paper Code	Semester VII- Paper I	Lectures
RPSBAS701	Pharmaceutical Microbiology & Pharmaceutical Manufacturing	60
	701.1: Pharmaceutical Microbiology	
Ratur	 Asepsis, Disinfection and Sterilization, Concept of death curve of microbial population, Aseptic filling in Pharmaceutical Industry, Classification of Clean Rooms/ Clean areas, Quality Control and Quality Assurance in Pharmaceutical Industry Important microbes for Food and drug industry, Pathogenic organisms in Food and Pharmaceutical Industry. Sources of Contamination, Microbial Contamination in Ayurveda, Siddha & Unani (ASU) preparations. Regulatory microbiological testing in pharmaceuticals Microbiological assays for pharmaceutical products. 	15
	 Formation Bioassays in Pharma Evaluation General idea about bioassay systems used in pharmaceutical evaluations In vitro assays and in vivo assays Ethical issues of using animal assay systems Alternatives to animal assays – one or two examples 	15

	 701.3: Immunoassays & Immunoinformatics 1. Introduction to Immune system 2. Introduction to Immunoassay and its types 3. Requirements for immunoassay 4. Standardization of Immunoassay 5. Advantages and Disadvantages of immunoassay 6. Integrated scenario of Immunoinformatics & research areas 7. Immunomics & databases- CED, IEDB, Epitome 8. Applications of Immunoinformatics 701.4: Pharmaceutical Manufacturing 1. Overview of Pharmaceutical manufacturing 2. Importance of Schedule M (D& C) in Pharmaceutical manufacturing process 3. Regulatory requirements in pharmaceutical manufacturing of oral solid dosage forms, oral liquid dosage forms, sterile injectables and topical dosage forms 	15 00 15
RPSBASP701	PRACTICALS	
 Bioassay Immuno Total Vi Screenin Study of 	y of Penicillin y of Vitamin B ₁₂ bassays for detection of Hepatitis B/Dengue able Count of microorganisms from herbal Raw materials and formulations ng of Pathogenic organisms from Food/herbal raw materials/formulations antibiotic producers ^T MIC of a pharmaceutical product	

- 1. Pharmaceutical Manufacturing Handbook, Production and Processes, Edited by: Shayne Cox Gad
- 2. Hugo and Russell's Pharmaceutical Microbiology
- 3. Prescott, Harley and Klein's Microbiology: Willey, Sherwood and Woolverton
- 4. Remington The Science and Practice of Pharmacy- Lippincott Wiliams & Wilkins
- 5. Immunology: Essential and Fundamental- Palan and Pathak
- 6. Kuby Immunology: Kindt, Goldsby& Osborna
- 7. Immunoinformatics, Methods in Molecular Biology: Namrata Tomar: Springer
- 8. Principle and practice of Bioanalysis: Richard F. Venn
- 9. Essential Bioinformatics: Jin Xiong

Course Title: Pharmacology & Toxicology

Academic year 2020-21

COURSE OUTCOMES

COURSE OUTCOME	DESCRIPTION
CO 1	Students will realize the importance of toxicological studies for ensuring safe administration of pharmaceuticals.
CO 2	Students will get hands-on training in toxicological assays.
	DETAILED SYLLABUS

Paper Code	Semester VII- Paper II	Lectures
RPSBAS702	Pharmacology & Toxicology	60
	 702.1: Basic Pharmacology Scope of Pharmacology Sources, Nature and Nomenclature of Drugs Dosage Forms and Routes of Drug Administration Dose-Response Relationship 	15
	 702.2: Pharmacokinetics & Pharmacodynamics Basic concepts of Pharmacokinetics & Pharmacodynamics Different Pharmacokinetic & Pharmacodynamics parameters and their meanings Basic techniques of evaluating Pharmacokinetic & Pharmacodynamics parameters Basic types of models in Pharmacokinetics & Pharmacodynamics 702.3: Pharmacogenomics 	15
Ran	 Introduction to pharmacogenetics and Pharmacogenomics, benefits and practical applications of Pharmacogenomics, Personalized medicines. Human Genetic variation - e.g. CYP gene variations leading to variable metabolism of drugs Distribution of variation Mutation and its kinds Natural selection Variation in ethnic groups, races. 	15

RUIA COLLEGE

Ramnarain Ruia Autonomous College, Syllabus for Bioanalytical Sciences (PG) 2020-2021

	702.4: Toxicology	
	1. Introduction, History, Scope and types of toxicological studies	
	2. Toxicants and their classification	
	3.Mode of action of Toxicants (Toxicokinetics and Toxicodynamics)	
	4. Dose Toxicity Relationship	
	5. Adverse drug reaction & treatment of Poisoning	
	6. Concept of LC 50, LD50, ED50	15
	7. Applications of Toxicology	
	Regulatory Toxicology	0
	1. Introduction to Regulatory Toxicology	
	2. Types of toxicity tests	
	3.0ECD Guidelines on Toxicological studies- Design considerations,	50
	Evaluation of results, Extrapolation to man	
	4. Risk analysis of Food & Drug related substances	
	5. Environmental impact assessment	
RPSBASP702	PRACTICALS	
1. Calculation	of different pharmacokinetic parameters like K_a , K_e , $t_{1/2}$, C_{max} , T_{max} and AUC fr	om the
given blood		
2. pK of a dru	g using UV-Vis Spectrophotometer	
	tion using a suitable model (Daphnia/Rice weevils/Chyronomous larvae)	

4. Study of Hepatoprotective action of a herbal drug against CCl₄ liver dysfunction in rats (an experimental comparison using suitable groups of controls, natural recovery & treatment with known hepatoprotectants to be carried out)

- 1. Essentials of Medical Pharmacology: K. D. Tripathi, Jaypee Publications
- 2. Pharmacology: George M. Brenner, Craig Stevens:
- 3. Casarett & Doull's Toxicology, The basic Sciences of Poisons: Dr. Curtis Klaassen
- 4. Fundamentals of toxicology: Pandey, Shukla, Trivedi
- 5. Fundamentals of Pharmacognosy and Phytochemistry: Heinrich, Barnes, Gibbons and Williamson
- 6. Text book of Pharmacognosy: G.E. Trease, W.C. Evans
- 7. Pharmacognosy: Chandrakant Kokate
- 8. Herbal Drug Technology: Agrawal, Paridhavi
- 9. Pharmacognosy: Tyler, Brody, Robbers
- 10. Pharmacogenomics: Challenges and Opportunities in Therapeutic Implementation- Yui-Wing Francis Lam & Stuart Scott
- 11. Principles of Pharmacogenetics and Pharmacogenomics- Altman, Flockhart & Goldstein

Course Title: Extraction, Separation and Isolation of Analytes from biological matrices

Academic year 2020-21

COURSE OUTCOMES

COURSE	DESCRIPTION
OUTCOME	
CO 1	Students will be able to safely handle different biomatrices.
CO 2	Student should be able to choose and perform appropriate method for extraction and isolation of analytes in varied biomatrices.
	DETAILED SYLLABUS

Paper Code	Semester VII- Paper III	Lectures
RPSBAS703	Extraction, Separation and Isolation of Analytes from biological matrices	60
	 703.1: Sample handling and Biomatrices Introduction to Bio-matrices-Microbial, Plant & Animal Collection and storage of Biological samples Microbes-Bacteria, Algae, Fungi, Protozoans Plants- different parts & stages of growth Animals & Humans- a) Blood, or whole blood, Plasma and serum b) Urine, Faeces c) Saliva d) Cerebrospinal Fluid, Synovial fluid e) Hair and Nails f) Tissue (Biopsies) 	15
Ran	 703.2: Extraction & Isolation of Analytes Physico-chemical properties of drugs and solvents Concept of partition & Partition Coefficient, Solvent properties Introduction to Liquid-liquid Extraction & Liquid-Liquid Micro- extraction, Solid Phase extraction & Solid Phase Micro-Extraction Techniques Ionization and its effect on the extraction of drugs The 'First law of drug metabolism' Matrix components & analyte isolation Concentration of extracts Isolations of fractions 	15

		703.3 Super Critical Fluid Extraction (SCFE) & Super Critical Fluid	
		Chromatography (SCFC)	
		1. The concept of SCFE & SCFC	
		2. Instrumentation of SCFE & SCFC	15
		3. Factors affecting SCFE & SCFC	
		4. Benefits of SCFE & SCFC	
		5. Application of SCFE for natural products and Application of SCFC	
		6. Conclusions and future perspectives	
		703.4: Electrophoresis	0
		1. Principles of electrophoretic separation	
		2. Equipment and process in electrophoresis	15
		3. Types of Electrophoresis	15
		4. Standardization of electrophoretic techniques	
		5. Troubleshooting in Electrophoresis	
		6. Applications of Electrophoresis	
		7. Advantages and Disadvantages of Electrophoresis	1
RP	SBASP703	PRACTICALS	
1.	Bioanalysis	of Urine, blood and serum sample	
2.	-	id Extraction of a modern drug	
3.		Extraction (SPE) of a drug from Plasma	
4.		cipitation techniques	
5.		Plant/ Animal/ Microbial proteins by SDS PAGE	
		nal Gel Electrophoresis of proteins (demo)	
7.		of a modern drug from plasma and its formulation/ peptides by Capillary	
	Electrophor		
	•		

- 1. Solvent extraction: Classical and Modern Approaches- Vladimir K. Kislik
- 2. Analytical Supercritical Fluid Extraction Techniques E.D. Ramsey
- 3. Bioanalysis of Pharmaceuticals- Wiley
- 4. Principles and Practices of Bioanalysis- Richard Venn
- 5. Electrophoresis: Theory and Practice- Budin Michov
- 6. Gel Electrophoresis: Basic concepts and Principles- Jill Clark
- 7. Capillary Electrophoresis: Theory & Practices- Grossman & Colburn

.0.

Course Code: RPSBAS704

Course Title: Different Systems of Medicine & Regulations

Academic year 2020-21

COURSE OUTCOMES

COURSE OUTCOME	DESCRIPTION
CO 1	Students will realize the importance of bioanalytical techniques for standardization of traditional medicines.
	standardization of traditional medicines.
CO 2	Students will be able to perform and compare modern analytical
	techniques such as HPTLC, HPLC, UV-Vis spectroscopy for
	standardization of pharmaceutical products.

Paper Code	Semester VII- Paper IV	Lectures
RPSBAS704	Different Systems of Medicine & Regulations	60
	 704.1: Disease Management as per different medicinal systems 1. History of Modern Medicine 2. Concept of disease, types of diseases 3. Patient: Signs & symptoms, clinical laboratory tests, lifestyle advice, Herbal medicine & homeopathy 4. Treatment: Infections, Endocrine disorders- Polycystic, diabetes, thursid Cordianagular disorders 	15
	 thyroid, Cardiovascular disorders 704.2: New Chemical Entity (NCE) & its Evolution into a drug molecule 1. What is NCE? 2. Stages in the development of NCE 3. Preclinical studies on NCE 4. Schedule Y 5. Current Status 	15
8a.	 704.3: Indian systems of medicine- Ayurveda, Siddha & Unani Principles and practices of ASU systems of medicine Diagnosis & treatment as per Ayurveda (Special emphasis on Panchakarma) Types of Drug formulations as per ASU systems Dosage forms as per ASU system Mode of action of drugs according to Ayurveda 	15

	 704.4: Standardization aspects of Ayurveda, Siddha & Unani drugs 1. Need of standardization of Ayurvedic, Siddha & Unani drugs 2. Approaches to standardization 3. Sources of Raw materials & Finished products as per ASU drugs 4. Methods of manufacture-raw materials to finished products 5. Quality control of ASU drugs in India 6. Developing standardized QC methods 7. Shelf life studies on finished products 8. Bioanalytical tools for standardization 9. Clinical studies in Standardization 10. Regulatory Aspects
RPSBASP704	PRACTICALS
1. Microsco	pic evaluation of Ayurvedic drugs (e.g. Triphala Churna/Avipattikar Churna)
formulat	formance Liquid Chromatography (HPLC) separation of herbal raw material from its ion (any one example)

- 3. HPLC analysis of modern drugs from plasma, formulations and combination formulations
- 4. Standardization of any one formulation using classical and modern analytical techniques
- 5. Comparative estimation of caffeine by using UV-Visible spectrophotometer, HPTLC & HPLC.

- 1. Indian Herbal Pharmacopoeia
- 2. Drugs and Cosmetics Act 1940 and Rules 1945
- 3. Database on medicinal plant used in Ayurveda: Sharma, Yelne and Dennis
- 4. Globalisation of Ayurvedic & Herbal products, challenges and strategies
- 5. Disease Management: A Guide to Clinical Pharmacology- M. Randall & K. Neil

Modality of Assessment

Sem VII

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1.	Internal Examination	20
2.	Assignment/Group Discussion/Presentation/Class Activity	20
	TOTAL	40

5

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **2.5 Hrs** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q.1 Short answer questions (4 Marks each)	3 out of 4	12	Unit I
Q.2 Short Answer questions (4 Marks each)	3 out of 4	12	Unit II
Q.3 Short Answer questions (4 Marks each)	3 out of 4	12	Unit III
Q.4 Short Answer questions (4 Marks each)	3 out of 4	12	Unit IV
Q.5 Objective/short answer questions (3Marks each)	4 out of 6	12	Combination of all units
, or	TOTAL	60	
Balli			

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars		
Journal	10	
Experimental tasks/Attendance	10	(
Small project/Class assignment/Presentation/Activity/Viva	20	2
Total	40	

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

xternal Examination: 60%- 60 Marks	12
emester End Practical Examination:	alor.
Particulars	Paper
Required Experiments Performed with appropriate	60
principle, approach, Observations, Result, 🔍	
Demonstration of skills, Conclusion and Viva.	
Demonstration of skins, conclusion and viva.	

Overall Examination & Marks Distribution Pattern

Semester VII

Course		701			702			703	•		704		Grand Total
	Internal	External	Total										
Theory	40	60	100	40	60	100	40	60	100	40	60	100	400
Practicals	40	60	100	40	60	100	40	60	100	40	60	100	400
R													

To be revised for academic year 2020-2021

Course Title: Molecular Biology & Tissue culture

Academic year 2020-21

COURSE OUTCOMES

	COURSE OUTCOMES
COURSE OUTCOME	DESCRIPTION
CO 1	Students will learn different tissue culture techniques and their applications.
CO2	Student will understand the significance of cell and gene therapy as a potent futuristic medicine.
CO 3	Students will be trained in molecular biology techniques such as PCR, RFLP, and DNA purification

Paper Code	Semester VIII- Paper I	Lectures			
RPSBAS801	Molecular Biology & Tissue culture				
	 801.1: Advances in Plant tissue culture Media and role of plant hormones (Natural and synthetic media) Callus Production Shooting and rooting Hardening and further propagation Design and requirements of green house/polyhouse Production of Secondary Metabolites using PTC, Commercial aspects with examples 	15			
Ram	 801.2: Advances in Animal Tissue Culture Media and role of serum (Natural and synthetic media) Primary and secondary cell lines, Established cell lines Trypsinization, evaluation of viability and maintenance of cell lines, CO₂ incubator Specialized cell lines-HeLa cell line, Mouse cell line, CHK cell Lines, etc. 	15			

	801.3: PCR & its application	
	 Introduction to Polymerase Chain Reaction Types of PCR: Conventional Qualitative PCR, Hot start PCR, Colony PCR, Nested PCR, Realtime PCR, Reverse transcriptase PCR, Touchdown PCR, Mulitplex PCR, Assembly PCR, Methylation specific PCR, LAMP assay PCR instrumentation: Principle of thermal cycler PCR standardization Primer designing: Primers for Qualitative PCR, Primers for Epitope tag, Mutagenesis primers Applications of PCR: Gene expression analysis, Cloning, RFLP-PCR, AELP, PAPD, SNR genetiming Diagnostics, DNA sequencing 	15
	AFLP, RAPD, SNP genotyping, Diagnostics, DNA sequencing. 801.4: Cell and Gene Therapy Products	
	 Meaning of gene therapy, Viral & non-viral methods for gene delivery Gene editing techniques: RNAi, ShRNA, Crispr/Cas9 Stem cell therapy Manufacture, storage, shipping & labelling of cell & gene therapy products 	15
RPSBASP801	PRACTICALS	
260/280 ratio	raction and separation using agarose gel electrophoresis and purity asso ion and RFLP analysis of the same.	essment by
3. Elution of DNA	A from gel	
_	ing for given DNA sequence	
	of DNA using PCR of Genetically Modified Organism (GMO) using a suitable technique	
	nting via RFLP analysis	
8. DNA sequenci		

- 1. Principles and Practice of Animal Tissue Culture: Sudha Gangal
- 2. I-Genetics: A Molecular Approach: Peter J. Russell
- 3. US Pharmacopoeia: Chapter 1046 and 1047.
- 4. Introduction to Plant Tissue Culture- M. K. Razdan

Course Code: RPSBAS802

To be revised for academic year 2020-2021

Course Title: Intellectual Property Rights, Drugs and Cosmetic Act & Regulations

Academic year 2020-21

COURSE OUTCOMES

COURSE OUTCOME	DESCRIPTION
CO 1	Students will be familiarized with the current legal scenario regarding intellectual property rights.
CO2	Students will understand the importance of Drug act and the need for regulations in Bioanalysis.
CO3	Students will be able to perform stability studies for pharmaceuticals.

Paper Code	Semester VIII- Paper III			
RPSBAS802	Intellectual Property Rights, Drugs and Cosmetic Act & Regulations			
Rath	 802.1: Intellectual Property Rights-I Concept of IPR - Understanding IPR & its significance in knowledge- based economy. Types of IPR - Patents, Trade Marks & Service Marks, Design Registration, Trade Secrets, Geographical indications, Protection of New Plant Varieties, Copyright. Global Harmonization - Impact of IPR on global trade and the need for harmonization, WTO and its role in a global harmonization, TRIPS and introduction to the articles in TRIPs document as well as the flexibilities provided by TRIPS. International Agreements related to IPR & patents - Paris Convention, PCT. 	15		
	 802.2: Intellectual Property Rights-II 1. Indian Patent Act - a) Criteria to be fulfilled for Patentability - new/novel, non-obvious/inventive step, useful/capable of industrial application. b) Non-patentable subject matter - what is not patentable. c) Concept of Mailbox and EMR and how it has helped India in its transition to full TRIPS compliance. d) Role of patentee and patent offices in patent management including lab documentation, confidentiality agreements, pre- and post-grant opposition, servicing of patents. e) Provisional Patents, Divisional Patents & Patents of Addition. 	15		

	 IPR as a strategic tool - a) Concepts of piracy, reverse engineering and knowledge worker. b) Benefits of creating and/or owning patents and other IPR. c) How India has leveraged the flexibilities provided by TRIPS to safeguard the industry and prevent ever-greening of patents. IP clearance - Precautions before launching of product anywhere in the world 	
	 a) Concepts of Freedom to operate (FTO) search and analysis for patents, Exclusivity and SPC status check b) Other IPR checks like trademarks, copyrights (for printed data on leaflets, packages etc.) 4. Putting IPR related disclaimers while advertising product list or selling products. 	50
	 B02.3: Drugs & Cosmetics Act and Regulation Indian Drugs and Cosmetics Act with respect to Schedule 1,2 and Schedule A, H, M, S, T, X, & Y Introduction to foreign guidelines (for import of drugs) with respect to US, EU, Australia & Japan Introduction to 21 CFR Part 11 	15
RPSBASP802	 802.4: Good Manufacturing Practices (GMP) Introduction to GMP Requirements of GMP implementation Documentation of GMP practices Regulatory certification of GMP GMP in production of ASU drugs Harmonization of SOP of manufacture Audit for GMP compliances PRACTICALS 	15
1. Patent Clain	n Drafting, Patent Evaluation	
3. Stability stu	HPLC analysis of herbal raw material & ASU formulations (3 Examples) dies of drugs (API & Formulation) with respect to the effect of pH, Temperatu d Light (any 4 experiments)	re,

- 1. Intellectual property rights: N. Pandey, K. Dharni
- 2. Indian Patent Law and Practice: K.C. Kankanala
- 3. Drugs and Cosmetics Act 1940 and Rules 1945
- 4. The Certified Pharmaceutical GMP Professional Handbook, Second Edition: Mark Allen Durivage
- 5. Law Relating to Intellectual Property- Dr. B.L.Wadehra

To be revised for academic year 2020-2021

Course Title: Quality Management in Pharmaceutical Industry

Academic year 2020-21

COURSE OUTCOMES

COURSE OUTCOME	DESCRIPTION
CO 1	Students will get an insight into the good practices followed in industrial operations.
C02	Students will realize the importance of documentation and strict adherence to protocol in bioanalytical industries.

Paper Code	Semester VIII- Paper III	Lectures
RPSBAS803	Quality Management in Pharmaceutical Industry	60
	 803.1: Good Laboratory Practices What is GLP? Practicing GLP Guidelines to GLP Documentation of Laboratory work Preparation of SOPs Calibration records Significance of validation in GLP Transfer of methods Documentation of results 	15
Rann	 803.2: Marketing of Pharmaceuticals Stages leading to marketing Authorization Unlicensed indication Advertising of Pharmaceuticals a. FDA b. Direct to Consumer Advertising 	15

	803.3: Packaging in Pharmaceutical Industry	
	1. Introduction to Packaging	
	2. Fundamentals of Distribution	
	 Packaging Forms & their Significance Packaging Materials 	
	 Fackaging Materials Paper, Paper Board and CFB Glass, metals, Basic Polymer based materials, Polymer based composite materials 	15
	6. Ancillary Mats	
	7. Package Material Testing	0
	8. Compatibility & Migration Studies	
	9. Packaging Validation	
	10. Packaging Laws and regulatory compliance	
	803.4: Quality Control & Quality Assurance in Pharmaceuticals	
	 Introduction to QC & QA Requirements for implementing QC & QA 	
	3. QC & QA concepts in ASU drugs	15
	4. Standardizing an Analytical method	-
	5. Factors affecting standardization	
	6. Support work & documentation, Validation	
	7. Audit requirements, audits and audit reports	
RPSBASP803	8. Personnel Responsibility in QA PRACTICALS	
NI 50A51 005		
1. Study of com	patibility of container (primary/secondary packaging) with the drug	
•	ificate of Analysis (COA)	
	of Standard Operating Procedure (SOP) for any one analytical instrument	
	f life of herbal drugs	
	on of percentage purity of CaCO ₃ / MgCO ₃ by Complexometric titration	
Chemical ass	ay of an API/Formulation in compliance with Pharmacopoeia	

6.

- 1. GLP Essentials: A Concise guide to Good Laboratory Practice, 2nd Edition: Milton A. Anderson
- 2. Good Laboratory Practice Regulations: Sandy Weinberg
- 3. The Certified Pharmaceutical GMP Professional Handbook, Second Edition: Mark Allen Durivage
- 4. Pharmaceutical Packaging Handbook: Edward Bauer
- 5. Remington, Essentials of Pharmaceutics: Linda Felton

To be revised for academic year 2020-2021

Course Title: Pharmaceutical Testing and Proteomics

Academic year 2020-21

COURSE OUTCOMES

COURSE OUTCOME	DESCRIPTION
C01	Students will be enabled to make effective use of Pharmacopoeia in evaluation of drugs and related substances.
CO2	Student will learn to deal with possible challenges in biopharmaceutical testing.
CO3	Students will be able to perform pharmacopeial assays for active pharmaceutical ingredient and tablet properties.

Paper Code	Semester VIII- Paper IV			
RPSBAS804	Pharmaceutical Testing and Proteomics			
	 804.1: Pharmacopoeial tests Introduction to World Health Organization (WHO) Introduction to Pharmacopoeial Indian Pharmacopoeia (IP), British Pharmacopoeia(BP), United States Pharmacopoeia (USP), (Japanese Pharmacopoeia(JP), European Pharmacopoeia (EP), Australian Pharmacopoeia(AP) where ever applicable) Specified test in Monographs with respect to liquid formulation (injectible) and solid dosage form (USP, EP, BP, IP) AP, Indian Herbal Pharmacopoeia (IHP) and Ayurvedic Formulary of India(AFI) (wherever applicable) 	15		
Rain	 804.2: Stability Studies Types of Stability studies Stability Chambers Regulatory requirements for stability studies Factors affecting stability of Products Predicting shelf life of a finished product Guidelines for Stability studies 	15		
	 804.3: Biopharmaceuticals & Biosimilars Introduction to Biopharmaeuticals & Biosimilars Sources of Biopharmaceuticals (<i>E. coli</i>, Animal cells, Additional systems) Upstream & Downstream Processing Therapeutic Hormones, Recombinant blood products & Therapeutic Enzymes Biosimilars Development, Review & Approval 	15		

	6. Scientific Considerations in Demonstrating Biosimilarity to a Reference Product				
	804.4: Proteomics				
	1. Protein extraction, separation, purification and identification				
	2. Protein fingerprinting techniques 15				
	3. Endogenous peptides and concepts of post translational				
	modifications				
	4. Chemical modification of proteins				
RPSBASP804	PRACTICALS				
1. Turbidity a	nalysis of a liquid formulation				
2. Study of Ph	armaceutical Preparation: Chemical assay as per IP				
3. Study of Ha	3. Study of Hardness and Friability of a tablet				
4. Study of Disintegration and Dissolution of a tablet as per IP/USP (uncoated)					
5. Study of Dia	5. Study of Disintegration and Dissolution of a tablet as per IP/USP (enteric coated)				
6. Analysis of	Biopharmaceuticals/Biosimilars				

References:

- 1. Indian Pharmacopoeia
- 2. U.S. Pharmacopoeia
- 3. British Pharmacopoeia
- 4. Indian Herbal Pharmacopoeia
- 5. Biosimilars: Regulatory, Clinical, and Biopharmaceutical Development: Hiten G., Harry Yang., Shefali Kakar
- 6. Introduction to Proteomics: Tools for the new Biology: Daniel C. Lieber.
- 7. Handbook of Stability tasting in pharmaceutical development: regulations, methodologies and best practices: Springer

22

Modality of Assessment

Sem VIII

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1.	Internal Examination	20
2.	Assignment/Group Discussion/Presentation/Class Activity	20
	TOTAL	40

B) External Examination- 60%- 60 Marks

Semester End Theory Examination:

- 1. Duration These examinations shall be of **2.5 Hrs** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q.1 Short answer questions (4 Marks each)	3 out of 4	12	Unit I
Q.2 Short Answer questions (4 Marks each)	3 out of 4	12	Unit II
Q.3 Short Answer questions (4 Marks each)	3 out of 4	12	Unit III
Q.4 Short Answer questions (4 Marks each)	3 out of 4	12	Unit IV
Q.5 Objective/short answer questions (3 Marks each)	4 out of 6	12	Combination of all units
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%-40 Marks

Particulars		
Journal	10	
Experimental tasks/Attendance	10	60
Small project/Class assignment/Presentation/Activity/Viva	20	6.0
Total	40	
rnal Examination: 60%- 60 Marks	5	_
ter End Practical Examination:	Our	

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

1
60
60

Overall Examination & Marks Distribution Pattern

Semester VIII

Course	801			802			803 804			Grand Total			
	Internal	External	Total	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	40	60	100	400
Practicals	40	60	100	40	60	100	40	60	100	40	60	100	400
2	an												

Course Title: Automation & Data Management Academic year 2020-21

COURSE OUTCOMES

COURSE	DESCRIPTION
OUTCOME	
C01	Student will be aware about the need for Automation in analysis.
CO2	Students will realize the importance of clinical data management and electronic data management
CO3	Student will be able to visualize protein tertiary structures using bioinformatics tools
	DETAILED SYLLABUS

Paper Code	Semester IX- Paper I	Lectures
RPSBAS901	Automation & Data Management	60
	 901.1: Automation of sample preparation 1. Introduction to Automation 2. Need for Automation in chemical, clinical analysis 3. Approaches to Automation: Solid phase extraction, Protein precipitation methods, Multi-well plate technology, Liquid handling procedures avoiding evaporation 4. Importance of automation in Bioanalysis 	15
	 901.2: Electronic Data Management 1. Electronic Acquisition of data 2. Management of data in Computers 3. Electronic Data Validation and regulatory requirements 4. Electronic signatures & its regulation 5. Generating reports using computers 6. Regulatory requirements of Data evaluation 	15
Ram	 901.3: Bioinformatics in Disease Management 1. Basic concepts on identification of genes responsible for diseases 2. Role of bioinformatics in human disease analysis 3. OMIM database 4. Reference genome sequence & integrated genomic maps 5. Gene expression profiling 	15

-					
		901.4: Introduction to Clinical Data Management			
		1. Introduction to CDM			
		2. Collection, Cleaning, and Management of subject data			
		3. Tools for CDM			
		4. Regulations, Guidelines, and Standards in CDM			
		5. The CDM Process	15		
		6. Review and finalization of study documents			
		7. Database designing, Data Collection			
		8. CRF tracking	.0,		
		9. Data entry & Validation, Medical Coding	6		
		10. Roles and Responsibilities in CDM	0,0		
RP	SBASP901		Practical		
1.	Tertiary str	ucture and function prediction using homology modeling and <i>ab initio</i> metl	hod		
2.					
3.	Visualizatio	n of 3D Protein structure using Rasmol, VMD			
4		ng a docking software to study protein-ligand interaction			

4. Docking: Using a docking software to study protein-ligand interaction

References:

amare

- 1. USFDA 21 CFR Part 11 Web resource: https://www.fda.gov/regulatory-information/search-fdaguidance-documents/part-11-electronic-records-electronic-signatures-scope-and-application
- 2. Bioinformatics for Diagnosis, Prognosis and Treatment of Complex Diseases
- 3. Practical Guide to Clinical Data Management: Susanne Prokscha
- 4. Principles and Practice of Bioanalysis- Richard Venn
- 5. High throughput Bioanalytical Sample Preparation: Methods and Automation Strategies- David Wells
- 6. Experiences with Automated Sample Preparation in Bioanalysis-Picot and McDowall
- 7. Introduction to Electronic Data Management system- B.Lusia
- 8. Introduction to Electronic Data Management system- W. Green
- 9. Guidance for Industry Part, Electronic Records; Electronic Signatures- Scope and Application

Course Title: Bioanalytical techniques Academic year 2020-21

COURSE OUTCOMES

COURSE	DESCRIPTION
OUTCOME	
C01	Students will be able to understand the importance of hyphenated
	techniques.
CO2	Students will be able to analyse and interpret mass spectrometric data for identification and quantification of analytes.
CO3	Students will get hands-on training on HPLC.

Paper Code	Semester IX- Paper II	Lectures
RPSBAS902	Bioanalytical techniques	60
	 902.1: Introduction to Mass Spectrometry (MS) 1. Evolution of MS 2. Importance of MS as a detector 3. Interfaces used in LC-MS & GC-MS 4. Sample preparations of MS 5. Components of Mass Spectrometer: a) Inlets b) Ion sources- GC-MS: EI, CI; LC-MS: ESI,API(APCI & APPI), FI,FD,FAB,TSP, MALDI c) Analyzers- QP, TOF, Ion trap, Magnetic sector, Hybrid analyzers d) Detectors 6. Importance of vacuum in MS system 7. Sample preparation for MS 	15
Raini	 902.2: Hyphenated Techniques in Bioanalysis Introduction to MS/MS (tandem MS) GC/MS and GC/MS/MS LC/MS and LC/MS/MS Scan events in Triple Quadrupole and other tandem systems and hybrid systems 	15
7	 902.3: Applications and Advances of Mass Spectroscopy Introduction to ICP-MS and its industrial applications. Introduction to advances in the field of mass spectroscopy e.g. Headspace Gas chromatography, Thin Layer Chromatography-Mass Spectroscopy 	15

	902.4: Application of Tracer techniques	
	1. Concept of Radioactivity & Half life	
	2. \propto , β , γ emitters and their biological applications	
	3. Using tracers in assays	15
	4. Detectors and counters	
	5. Concept of autoradiography	
	6. Radiolabeled probes and their uses	
RPSB	BASP902 PRACTICALS	
1.	HPLC analysis of modern drug from plasma	0
2.	LC/MS quantitation of a modern drug (e.g. Diclofenac Sodium, Ezetimibe etc.)	
3.	GC/MS separation of plant essential oil (Demonstration)	
4.	LC/MS/MS quantitation of a modern drug from plasma (e.g. Diclofenac Sodium)	
5.	LC/MS/MS quantitation of metabolite of a modern drug from plasma	
	(e.g. Mycopenolic acid, metabolite of Mycophenolatemofitil). 🥂 🦯	<i>F</i>
6.	Mass Fingerprinting of peptides using a suitable sample	
	Ć	

- 1. Principles of Instrumental Analysis Skoog, Holler, Crouch
- 2. Modern Practices in Gas-Chromatography- Robert L. Grob, Eugene F. Barry
- 3. Radioactive Tracer Techniques by George Keene Schweitzer
- 4. Handbook of Analytical Techniques, Vol I & II- Wiley Publications

Course Title: Research Methodology & Biostatistics

Academic year 2020-21

COURSE OUTCOMES

COURSE	DESCRIPTION
OUTCOME	60
C01	Student will understand the importance of research methodology and research designs in all fields of research.
CO2	Students will also be able to use descriptive statistics and test of significance for accurate statistical calculations in research.

Paper Code	Semester IX- Paper III	Lectures
RPSBAS903	Research Methodology & Biostatistics	60
	 903.1: Introduction to Research Methodology Meaning, objectives and motivation of Research Various Types of Research: a) Descriptive v/s Analytical b) Applied v/s Fundamental c) Quantitative v/s Qualitative d) Conceptual v/s Emperical Overview & flowchart of research process. Literature review: Surveying, synthesizing, critical analysis, reading materials, reviewing, rethinking, critical evaluation, interpretation Research Purposes Ethics in research – APA Ethics code. 	15
Ran	 903.2: Research design Definition of research design & its importance Features of Good Research Design Important Concepts regarding Research Design: a) Dependent, Independent, Extraneous variables b) Importance of control c) Research hypothesis, experimental & non-experimental hypothesis testing d) Treatment, experimental & experimental units Research designs: Exploratory research, Descriptive & diagnostic research, Hypothesis testing research Informal experimental design: Before & after without control, After- only without control, Before & after with control 	15

	903.3: Descriptive Statistics & Regression Analysis	
	1. Concepts: Population, Sample, sample size, Normal distribution,	
	Level of significance, Confident limits, Power of test	
	2. Sampling Design:	
	 a. Different Types of Sampling Design: Simple Random Sampling Stratified Random Sampling, Systematic Sampling, Cluster Sampling, Area Sampling, Multistage Sampling. b. Steps in sample design 3. Data Collection 	15
	 a. Primary Data collection through Questionnaire & Schedules b. Collection of Secondary Data 	
	4. Data Analysis:	
	a. Measures of central tendency (mean, median, mode)	
	b. Measures of dispersion (range, sample deviation, variance,	
	CoV) c. Introduction to correlation & regression analysis	
	c. Introduction to correlation & regression analysis	
	903.4: Test of Significance	
	1. Introduction to hypothesis testing & Errors in Testing	
	 Introduction to hypothesis testing & Errors in resting Introduction to parametric tests- Z-test, t-test, Chi-Square test, F- 	
	test, ANOVA (One way and Two way).	
	 Introduction to non-parametric test- Mann–Whitney U test, Kruskal-Wallis test 	15
	4. Design of experiments: Block designs (CRD, RBD), Latin square	
	design	
	5. Introduction to statistical packages for data analysis	
RPSBASP903		PRACTICALS
1. Report wri		
 Case studie Abstract w 		
	paper review	
-	aire designing	
-		
6. Graphical	Representation of a data	

- 1. Research Methodology: Methods and Techniques: C. R. Kothari
- 2. Essentials of research design and methodology: Geoffrey R. Marczyk
- 3. Fundamental of Research Methodology and Statistics: Y.K. Singh
- 4. Research Methodology: A Step-by-step Guide for Beginners: Ranjit Kumar
- 5. Methods in Biostatistics: B.K. Mahajan
- 6. Basic Concepts of Biostatistics: Arumugam
- 7. Biostatistics, Basic concepts and Methodology for the Health Sciences: Daniel & Cross
- 8. Fundamentals of Applied Statistics: Gupta and Kapoor: S. Chand and sons
- 9. Introduction to Biostatistics and Research Methods: Rao and Richard

Course Title: Internship

Academic year 2020-21

COURSE OUTCOMES

COURSE OUTCOME	DESCRIPTION
C01	Student will be trained to face the challenges of industry and will acquire requisite skills in the field of Bioanalysis and research.
	acquire requisite skins in the neta of biotharysis and rescarch.

DETAILED SYLLABUS

S

Paper Code	Semester IX- Paper IV	Lectures
RPSBASP904	Internship	120
	Industrial Training, and/or research project/ Online training (Swayam/Coursera/NPTEL/MOOC, etc.)/Online internship	
	1. Students should submit the detailed report regarding of the above- mentioned course.	
	 Students should consult the teacher mentor allotted by the department and HOD for taking up modules from the course. After getting approval from the mentor/HOD, student should provide 	
	 the weekly update to the mentor over email. 4. For internal component students are required to present the learning outcome(s) of the module twice in a semester and submit necessary assignments given by the mentor. 	
	arain	
Ball		

Modality of Assessment

Sem IX

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1.	Internal Examination	20
2.	Assignment/Group Discussion/Presentation/Class Activity	20
	TOTAL	40

B) External Examination- 60%- 60 Marks

Semester End Theory Examination:

- 1. Duration These examinations shall be of **2.5 Hrs** duration.
- 2. Theory question paper pattern:

Paper Pattern (except RPSBASP904):

Question	Options	Marks	Questions Based on
Q.1 Short answer questions (4 Marks each)	3 out of 4	12	Unit I
Q.2 Short Answer questions (4 Marks each)	3 out of 4	12	Unit II
Q.3 Short Answer questions (4 Marks each)	3 out of 4	12	Unit III
Q.4 Short Answer questions (4 Marks each)	3 out of 4	12	Unit IV
Q.5 Objective/short answer questions (3 Marks each)	4 out of 6	12	Combination of all units
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%-40 Marks

Particulars	
Journal	10
Experimental tasks/Attendance	10
Small project/Class	20
assignment/Presentation/Activity/Viva	G
Total	40
nal Examination: 60%- 60 Marks	-00-
er End Practical Examination:) *

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

SUL

Particulars	Paper
Required Experiments Performed with appropriate	60
principle, approach, Observations, Result,	
Demonstration of skills, Conclusion and Viva.	
Total	60

Overall Examination & Marks Distribution Pattern

Semester IX

Course	Course 901		rse 901 902 903		904			Grand Total					
	Internal	External	Total	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	40	60	100	400
Practicals	40	60	100	40	60	100	40	60	100	40	60	100	400

To be revised for academic year 2020-2021

Course Title: Analytical Techniques and their Validation

Academic year 2020-21

COURSE OUTCOMES

COURSE OUTCOME	DESCRIPTION
C01	Students will be trained to interpret spectral data of IR, NMR and LC- MS for structural elucidation of analytes.
CO2	Students will understand applications of these techniques with special emphasis on bioanalysis.
CO3	Students will be able to perform IQ/OQ/PQ for analytical instruments.

Paper Code	Semester X- Paper I	Lectures
RPSBAS1001	Analytical Techniques and their Validation	60
Dan	 1001.1: Thermal Analysis & XRD Principles of Thermal Analysis Instrumentation Requirements Applications of Thermal Analysis Thermal analysis of Bhasma preparations Thermal Analysis Techniques Theory of XRD and XRF Crystal structure of solids and concept of crystallography Bragg's law of diffraction Instrumentation of powdered XRD Application in the determination of polymorphs in pharmaceutical compounds Percent crystallinity, Single crystal XRD Determination of the 3D structure Wavelength dispersive (WD) and energy dispersive (ED) XRF Instrumentation of WD and (ED)XRF Applications of XRF for elemental analysis 	15
	 Chiral chromatography, Circular Dichroism-Optical Rotatory Dispersion Chiral Chromatography: Concept of chirality, Chiral HPLC, Column chemistry and column conditions in chiral HPLC, Applications of chiral HPLC Theory and Applications of Circular Dichroism & Optical Rotary Dispersion 	15

	1. 2. 3. 4.	01.3: Analytical Method Validation Concept of method validation Regulatory requirements of validation System suitability, Parameters for Method Validation Use of Reference standards Issues of Method transfer Intra lab validation and Inter lab validation Sampling	15
	10 1. 2. 3. 4. 5. 6. 7. 8.	Evolution of Regulated Bioanalysis Bioanalytical method validation Pre-study Validation In-study validation Documentation	15
RF	SBASP1001		PRACTICALS
1. 2. 3. 4.	Analytical run d Study of Installa one analytical in	ation Qualification, Operational Qualification, Performance Qualifica	tion of any

- 1. Handbook of Analytical Techniques, Vol I & II
- 2. Chiral Chromatography by Beesley & Scott
- 3. Principles of Instrumental Analysis Skoog, Holler, Crouch
- 4. Regulated Bioanalysis: Fundamentals and Practice: Rocci Jr., Mario L., Lowes, Stephen
- 5. Analytical Method Development And Validation: Swartz and Krull
- 6. Validation of Analytical Methods, Methodology and Statistics: Shrivastava and Saxena
- 7. Introduction to Spectroscopy: Donald L. Pavia
- 8. Principles of instrumental analysis: Douglas a. Skoog
- 9. Ord and Cd in Chemistry and Biochemistry: Pierre Crabbe
- 10. Chiral Chromatography: Beesley & Scott

To be revised for academic year 2020-2021

Course Title: Advances in Bioanalysis

Academic year 2020-21

COURSE OUTCOMES

	COURSE OUTCOMES
COURSE	DESCRIPTION
OUTCOME	100
C01	Student shall be enabled to use mass spectrometry for qualitative and quantitative analysis of data and conduct method development and validation on analytical instruments.
	DETAILED SYLLABUS

Paper Code	Semester X- Paper II	Lectures
RPSBAS1002	Advances in Bioanalysis	60
	 1002.1: Qualitative applications of mass spectroscopy Structural elucidation by MS, Rules of fragmentation Interpretation of MS spectra Analysis of essential oils, pesticides Peptide mapping, peptide mass fingerprinting 	15
	 1002.2: Quantitative applications of mass spectroscopy Impurity profiling in drugs and drug products (sample Preparation and characterization) Macromolecule quantitation Small Molecule (SM) quantitation Applications in proteomics Pesticide residue analysis from different sample matrices Technique of generating drug metabolites Metabolite Identification & Metabolite quantitation 	15
Ran	 Bioanalytical Method Development Strategies for Method development What and Why of method validation Regulatory requirements of validation Intra and inter lab – Validation IQ, OQ and PQ of analytical instruments (practicals for this are already done in part one as per the new syllabus) Use of Reference standards Issues of Method transfer 	15

	1002.4: Bioanalytical Method Validation	
	 Pre- study Validation. Selectivity, Accuracy, Precision, Recovery, Calibration Curve, Sensitivity, Reproducibility, Stability Incurred sample re- analysis (ISR). Documentation and Additional issues like Endogenous substances & Biomarkers etc. In-Study Validation. 	15
RF	PSBASP1002	PRACTICALS
1.	Impurity profiling of Modern Drug by HPTLC/HPLC.	20
2.	Content Uniformity analysis of drugs by HPTLC/ HPLC.	
3.	IR patterns of an Ayurvedic Bhasma preparation (e.g. comparison of calcium from S	Shankha Bhasma
	– with pure $CaCO_3$ and other modern Calcium supplement)	
4.	AAS/Redox/ Colorimetric analysis of Lohabhasma. 🧷 🦯)
5.	Metabolite preparation, Identification, quantitation by LC-MS-MS	
6	Comparative interpretation of IR NMR and Mass spectra	

6. Comparative interpretation of IR, NMR and Mass spectra

References

- 1. Principles of Instrumental Analysis, Author: Skoog, Holler, Crouch
- 2. Method Validation in Pharmaceutical Analysis, Edited by: Ermer & Nethercote
- 3. Analytical chemistry by open learning- Mass spectrometry

amacain Ruita

- 4. Analytical Method Development And Validation: Swartz and Krull
- 5. Validation of Analytical Methods, Methodology and Statistics : Shrivastava and Saxena
- 6. Bioanalytical Method Validation: Waghulkar, Deshpande & Rathod

To be revised for academic year 2020-2021

Course Title: Clinical Research & Ethics

Academic year 2020-21

COURSE OUTCOMES

COURSE OUTCOME	DESCRIPTION
C01	Student will learn the various aspects of clinical research.
CO2	Student will get an overview of BA/BE studies and Therapeutic Drug Monitoring (TDM)
CO3	Students will be able to calculate pharmacokinetic parameters for the given drug

Paper Code	Semester X- Paper III	Lectures
RPSBAS1003	Clinical Research & Ethics	60
	1003.1: Good Clinical Practices & Ethics	
	Good Clinical Practices:	
	 Origin of GCP & Earlier Guidelines for GCP GCP Guidelines of ICH Ensuring GCP Compliance Documentation of GCP Audit of GCP compliance Ethics: Origin of Ethical issues 	15
Ram	 Dealing with Ethical issues Ensuring compliance of ethical issues Ethical committees & their setup Regulatory powers of ethical committees Compliance to ethical guidelines Dealing with Ethical issues (subject compensation and subject rights) Compliance to current ethical guidelines 	

1003.2: Pharmacovigilance	
1. Introduction to Pharmacovigilance	
2. Significance and need for Pharmacovigilance	15
3. Indian scenario and the role of regulatory in Pharmacovigilance	
4. Pharmacovigilance and safe use of medicines (with case studies)	
1003.3: Bioavailability (BA) & Bioequivalence (BE) Studies	
1. Concept of BA and BE	
2. Parameters to evaluate BA and BE of a drug	0.
3. Factors that influence BA and BE of a drug	60
4. Evaluating BA and BE of a drug	
5. Estimating BA and BE parameters of a drug	15
6. Design of a BA and BE study	
7. Conduct of a BA and BE study	
8. Data record and evaluation in BA and BE study	
9. Reporting a BA study	
10. Regulatory requirements of BA and BE	
1003.4 Therapeutic Drug Monitoring (TDM)	
1. Purpose of therapeutic drug monitoring	
2. Bioanalytical techniques in TDM	15
3. Analytical and practical issues of TDM	
4. Pharmaco-economics of TDM	
RPSBASP1003	PRACTICALS
1. Calculation of AUC and bioequivalence from the given data (2 expts.)	
2. Evaluation of a BA/BE Report	
3. Calculation of different Pharmacokinetic parameters like Ka, Ke, $t_{1/2}$, C max, T_{max}	
and AUC from the given blood data.	
4. Study of matrix effect by IR	
5. Use of IR spectroscopy as a quantitative tool	
6. Structural elucidation of compound by IR, NMR & MS.	

- 1. Principles of Good Clinical Practice: McGraw, George, Shearn, Hall and Thomas
- 2. Good Clinical Practice Standard Operating Procedures for Clinical Researchers: Graeme Scott, Josef Kolman, Paul Meng
- 3. Clinical Trials Audit Preparation: A Guide for Good Clinical Practice (GCP) Inspections: Vera Mihajlovic-Madzarevic
- 4. Design & Analysis of Bioavailability & Bioequivalence studies: Shein-Chung Chow & Jen-Pei Liu
- 5. Biopharmaceutics Applications in Drug Development: Rajesh Krishna & Lawrence Yu
- 6. Bioavailability and Bioequivalance in Pharmaceutical technology: T. K. Pal, P. K. Ganesan
- 7. Therapeutic Drug Monitoring: Newer Drugs and Biomarkers: Amitava Dasgupta
- 8. Therapeutic Drug Monitoring and Toxicology by Liquid Chromatography: Wong

To be revised for academic year 2020-2021

Course Title: Project Work

Academic year 2020-21

COURSE OUTCOMES

	COURSE OUTCOMES
COURSE	DESCRIPTION
OUTCOME	100
C01	Students will learn how to formulate hypothesis, carry out literature survey, test hypothesis by designing experiments, and interpret results
CO2	Students should understand the importance of proper documentation and should be able to present the research carried out.

Paper Code	Semester X- Paper IV						
RPSBASP1004	Project work						
 Studer Studer Studer The to analys Thorog Studer 	its are expected to identify a research problem relevant to the subject pic of research should be interdisciplinary, and should involve statistical						

7. Final hardbound report as well as the soft copy report of the project work should be prepared by the student as per the guidelines/ format provided by the institution & should submit the same to the department before the examination 8. Student is expected to prepare a PowerPoint presentation and present the same at the time of Practical examination and should face Viva voce based on the project work. **Research Review:** 1. Students should identify a topic for literature review 2. They should review at least 15 research articles for the review topic 3. Review article should be a detailed, comprehensive summary of the research articles in student's own words. 4. Final hardbound report as well as the soft copy report of the review article should be prepared by the student as per the guidelines/ format provided by the institution & should submit the same to the department before the examination 5. Student is expected to prepare a PowerPoint presentation and present the same at the time of Practical examination and should face Viva voce based on review article. **Research based on Survey/Case study** 1. Students should identify a topic for survey/case study 2. They should prepare an outline for data collection that can include questionnaire/interviews/referencing and present the same. Data collection can be done online, if required. 3. They should gather data for survey/case study in a stipulated time and keep record of the same. 4. After data, collection, students should analyze the data using appropriate statistical tests and write final conclusion of the study. 5. Final hardbound report as well as the soft copy of the survey/case study report should be prepared by the student as per the guidelines/ format provided by the institution & should submit the same to the department before the examination 6. Student is expected to prepare a PowerPoint presentation and present the same at the time of Practical examination and should face Viva voce based on survey/case study article.

amar

Modality of Assessment

Sem X

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1.	Internal Examination	20
2.	Assignment/Group Discussion/Presentation/Class Activity	20
	TOTAL	40

S

B) External Examination- 60%- 60 Marks

Semester End Theory Examination:

- 1. Duration These examinations shall be of **2.5 Hrs** duration.
- 2. Theory question paper pattern:

Paper Pattern (Except RPSBASP1004):

Question	Options	Marks	Questions Based on		
Q.1 Short answer question (4 Marks each)	3 out of 4	12	Unit I		
Q.2 Short Answer questions (4 Marks each)	3 out of 4	12	Unit II		
Q.3 Short Answer questions (4 Marks each)	3 out of 4	12	Unit III		
Q.4 Short Answer questions (4 Marks each)	3 out of 4	12	Unit IV		
Q.5 Objective/short answer question (3Marks each)	4 out of 6	12	Combination of all units		
	TOTAL	60			
22191					

Practical Examination Pattern:

A) Internal Examination: 40%-40 Marks

Particulars		
Journal	10	
Experimental tasks/Attendance	10	60
Small project/Class assignment/Presentation/Activity/Viva	20	60
Total	40	
	6	-
ernal Examination: 60%- 60 Marks	12	
ster End Practical Examination:	0	

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Paper
Required Experiments Performed with appropriate principle, approach, Observations, Result, Demonstration of skills, Conclusion and Viva.	60
Total	60

Overall Examination & Marks Distribution Pattern

Semester X

Course 1001		1002		1003		1004			Grand Total				
	Internal	External	Total	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	40	60	100	400
Practicals	40	60	100	40	60	100	40	60	100	40	60	100	400
Ś	an	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											