Resolution No.: AC/II (20-21).2.RPS11

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for: PG

Program: M.Sc.

Program Code: Zoology (RPSZOO)

(Credit Based Semester and Grading System for the academic year 2020–2021)

PROGRAM OUTCOMES

In the post graduate courses, S.P.Mandali's Ramnarain Ruia Autonomous College is committed to impart conceptual and procedural knowledge in specific subject areas that would build diverse creative abilities in the learner. The College also thrives to make its Science post graduates research/ job ready as well as adaptable to revolutionary changes happening in this era of Industry 4.0.

PO	PO Description
	A student completing Master's in Science program will be able to:
PO 1	Demonstrate in depth understanding in the relevant science discipline. Recall,
	explain, extrapolate and organize conceptual scientific knowledge for execution
	and application and also to evaluate its relevance.
PO 2	Critically evaluate, analyze and comprehend a scientific problem. Think
	creatively, experiment and generate a solution independently, check and validate
	it and modify if necessary.
PO 3	Access, evaluate, understand and compare digital information from various
	sources and apply it for scientific knowledge acquisition as well as scientific data
	analysis and presentation.
PO 4	Articulate scientific ideas, put forth a hypothesis, design and execute testing tools
	and draw relevant inferences. Communicate the research work in appropriate
	scientific language.
PO 5	Demonstrate initiative, competence and tenacity at the workplace. Successfully
	plan and execute tasks independently as well as with team members. Effectively
	communicate and present complex information accurately and appropriately to
	different groups.
PO 6	Use an objective, unbiased and non-manipulative approach in collection and
	interpretation of scientific data and avoid plagiarism and violation of Intellectual
	Property Rights. Appreciate and be sensitive to environmental and sustainability
	issues and understand its scientific significance and global relevance.
PO 7	Translate academic research into innovation and creatively design scientific
	solutions to problems. Exemplify project plans, use management skills and lead a
	team for planning and execution of a task.
PO 8	Understand cross disciplinary relevance of scientific developments and relearn
	and reskill so as to adapt to technological advancements.

PROGRAM SPECIFIC OUTCOMES

PSO	Description A student completing Master's in Science program in the subject of Zoology will be able to:
PSO 1	Identify, explore, understand the classification of invertebrates and vertebrates and compare between the anatomy and physiology of different phylum.
PSO 2	Gain comprehensive knowledge about different animal species and appreciate the differences and similarities, thereby achieving proficiency in handling them experimentally or for research purposes.
PSO 3	Understand and learn various behavioural patterns displayed by animals and interrelate to evolutionary pattern.
PSO 4	Evaluate and analyse basics of chemical thermodynamics and various biochemical pathways with respect to metabolism.
PSO 5	Analyse the various communication pathways taking place inside the cell and interrelate it with genetics.
PSO 6	Compare and contrast between Mendelian inheritance, Extension of Mendelian genetics and Non-Mendelian genetics
PSO 7	Interpret and analyse how morphological change due to change in environment helps drive evolution over a period of time.
PSO 8	Compare the different developmental stages of all the animals and connect it to the evolutionary link.
PSO 9	Apply the fundamentals and techniques of molecular biology in various fields.
PSO 10	Gain knowledge and understand various techniques in the field of environmental, medical and animal biotechnology
PSO 11	Understand the broad concepts of nutritional, endocrinology, reproduction biology, human pathology and develop employable skills with regards to clinical pathology.
PSO 12	Understand the broad concepts of plate tectonics, physico-chemical parameters of sea, Ocean currents and tides, biological life and fisheries and develop research based employable skills in the same field.
PSO 13	Apply their knowledge in problem solving and future course of their career development in higher education and research.
PSO 14	Develop critical thinking, planning and executing research projects and prepare themselves for various competitive examinations.

Important Note:

In the context of UGC circular of 2006 and the need to understand animal systems better at specialization stages in Zoology, limited anatomical studies of the animals has been introduced at the level of specialization in M.Sc. Zoology. These anatomical studies have been introduced keeping in focus that all aspects of ethics of animal experimentation is informed to the students and that it will be ensured that students are made to understand the ethical use of animals in Biology. In this context, anatomical studies in a limited manner will be used for training with the following conditions:

- The college is agreed to the inclusion of anatomical studies provided, that the students are not asked to kill and cut open live animals.
- The animal specimen if used for anatomical studies will be procured dead from local food market and are items of regular consumption by people.
- The sessions of anatomical studies are arranged in a planned manner to minimize the number of animal specimens used and to reuse the same animal specimen for multiple sessions.
- Further, College will constitute a Anatomical Study monitoring board which will be informed about the use of animals and that the usage will comply to the guidelines of ethical use and handling of animals.
- Students opting for specialization in Zoology M.Sc will be informed in advance about the inclusion of anatomical studies in the course work.

PROGRAM OUTLINE

YEAR	SEM	COURSE	COURSE TITLE	CREDITS
		CODE		
		RPSZOO101	Animal Systematics, Ethology and Ecology-I	4
		RPSZOO102	Biochemistry and Metabolism – I	4
		RPSZOO103	Genetics-I and Developmental Biology	4
		RPSZOO104	Applied Zoology- I	4
	_		Practical	Y
	Ι	RPSZOOP101	Animal Systematics, Ethology and Ecology-I	2
		RPSZOOP102	Biochemistry and Metabolism – I	2
		RPSZOOP103	Genetics-I and Developmental Biology	2
Ŧ		RPSZOOP104	Applied Zoology- I	2
Ň		RPSZOO201	Animal Systematics and Ethology – II	4
Σ		RPSZOO202	Biochemistry and Metabolism- II	4
		RPSZOO203	Molecular Biology and Genetics–II	4
		RPSZOO204	Applied Zoology-II	4
	II		Practical	
		RPSZOOP201	Animal Systematics and Ethology – II	2
		RPSZOOP202	Biochemistry and Metabolism- II	2
		RPSZOOP203	Molecular Biology and Genetics–II	2
		RPSZOOP204	Applied Zoology-II	2
		10,520,0120,1	Specialization- Animal Physiology	
		RPSZOO301	Basics of Industrial & Environmental	4
		14 520 0501	Biotechnology I	
	Ш	RPSZ00302	Genetic Engineering Techniques And Its	4
		10,220,0002	Applications	
		RPSZOP303	Comprehensive Physiology-I	4
		RPSZOP304	Environmental and Applied physiology-I	4
			Practical	•
		RPS700P301	Basics Of Industrial & Environmental	2
		NI SZOOT SOT	Biotechnology I	2
		RPS700P302	Genetic Engineering Techniques And Its	2
	•		Applications	2
7		RPSZOPP303	Comprehensive Physiology-I	2
Ň.		RPSZOPP304	Project	2
Σ		RPSZOO401	Basics of Industrial & Environmental	4
			Biotechnology- II	
	IV	RPS700402	Genome Management Manipulation Regulations	4
		N 5200402	And Patents In Biotechnology	
	~	RPSZOP403	Comprehensive Physiology-II	Δ
$\mathbf{\lambda}$		RPSZOP404	Environmental and Applied physiology-II	<u> </u>
y.		111 52/01 404	Proctical	+
		PD\$700D401	I factical Basics of Industrial & Environmental	2
		NI 5200F401	Biotechnology II	۷
		PDS700D402	Genome Management Manipulation Degulations	2
		NF 3200F402	And Datants In Biotechnology	2
			And Patents In Biotechnology	

			Community planting Disputies in the second	2
		Kr52UPP403	Comprehensive Physiology-II	2
		KPSZOPP404	Project	2
			Specialization- Oceanography	
		RPSZOO301	Basics of Industrial & Environmental Biotechnology I	4
		RPSZOO302	Genetic Engineering Techniques and Its Applications	4
		RPSZOG303	General, Physical, Chemical And Biological	4
		RPSZOG304	Planktology, Fish, Fishery Science, Immunology of Fish And Aquaculture	4
			Practical	
	III	RPSZOOP301	Basics of Industrial & Environmental	2
		RPSZOOP302	Genetic Engineering Techniques and Its	2
		RPSZOGP303	General, Physical, Chemical And Biological	2
		RPSZOGP304	Project	2
Sc-II		RPSZOO401	Basics of Industrial & Environmental Biotechnology- II	4
M		RPSZOO402	Genome Management, Manipulation, Regulations and Patents In Biotechnology	4
		RPSZOG403	Oceanographic Instruments and Expeditions, Marine Ecology, Marine Pollution and Biological Resources	4
		RPSZOG404	Planktology, Fish, Fishery Science and Biology Of The Ocean	4
	IV		Practical	
		RPSZOOP401	Basics of Industrial & Environmental Biotechnology- II	2
		RPSZOOP402	Genome Management, Manipulation, Regulations And Patents In Biotechnology	2
		RPSZOGP403	Oceanographic Instruments and Expeditions, Marine Ecology, Marine Pollution and Biological Resources	2
		RPSZOGP404	Project	2

Resolution No.: AC/II (20-21).2.RPS11

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for: Semester- I& II

Program: M.Sc

Program Code: Zoology (RPSZOO)

(Credit Based Semester and Grading System for the academic year 2020–2021)

Paper Code	Unit	Торіс	Cred
		Animal Systematics, Ethology and Ecology-I	
	Ι	Animal Taxonomy and Systematics	
	II	Phylogeny, Systematics of non-chordates, Hemichordate	
Paper I		and assorted topics	4
RPSZOO101	III	Ecological Principles	
	IV	Study of Animal Behavior	
		Biochemistry and Metabolism – I	
	Ι	Biomolecules- a structural and functional approach-I	
	II	Biochemical Thermodynamics	4
Paper II	III	Metabolic pathways and Integration of metabolism-I	
RPSZOO102	IV	Regulation of metabolism & Cell Communication	
		Genetics-I and Developmental Biology	
	Ι	Genetics Chromosome theory of inheritance and	
		Mendelism -I	4
Paper III	II	Genetics- Extension of Mendelian genetics and non-	
RPSZOO103		Mendelian inheritance –I	
	III	Evolution –I	
	IV	Developmental Biology	
		Applied Zoology- I	
	Ι	Instrumentation- Microtomy, microscopy,	
Paper IV		centrifugation-I	4
RPSZOO104	II	Biostatistics	
	III	Research Methodology-I	
	IV	IPR	
		Practical	
RPSZOOP101		Animal Systematics, Ethology and Ecology-I	2
RPSZOOP102		Biochemistry and Metabolism – I	2
RPSZOOP103	U	Genetics- I and Developmental Biology	2
		Applied Zoology-I	2
RPSZOOP104			

Semester-I Academic year 2020-2021

どう

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR M.Sc. ZOOLOGY (2020-2021) Experience & Experienc

Course Code: RPSZOO101

Course Title: Animal Systematics, Ethology and Ecology-I

Academic year 2020-21

COURSE (DUTCOMES:
----------	------------------

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Enumerate& classify the characteristics of different phyla.
CO 2	Compare and contrast between taxonomic procedures of animal classification.
CO 3	Interrelate the working and different systems of non-chordates and link it with their evolutionary process
CO 4	Understand and comprehend the broad concepts of animal behaviour and its applications in various fields of research.
CO 5	Analyze the different concepts in the field of population ecology, identify different population growth curves and correlate it with life strategies of different animals.

Detailed Syllabus

RPSZOO101	Title: Animal Systematics, Ethology and Ecology-I	Credits
		4
Unit–I	Animal Taxonomy and Systematic	15
		Lectures
	Introduction to taxonomy – Principles, stages, importance and rise	
	of taxonomy.	
	Taxonomic Procedures – Traditional or evolutionary method,	
	Phonetic and Cladistic Methods.	
	ICZN regulations and Zoological Nomenclature including use of	
	suffixes 'i', 'orum', 'ae', 'arum', 'ensis' and 'iensis'. oidea, idea,	
	inae,; Tautonyms, synonyms and Homonyms.	
	Concept of species- Different Species concepts, sub-species and	
	other intra-specific categories.	
<u> </u>	New trends in taxonomy: Ecological, Ethological, Cytological and	
-	Biochemical approaches and Numerical taxonomy	
	Molecular basis of animal taxonomy- DNA hybridization,	
	Restriction analysis and sequencing of nucleotides.	

	Systematics of Porifera up to classes	
	Systematics of Coelenterate up to classes	
	Systematics of Ctenophora up to classes	
Unit–II	Phylogeny, Systematics of non-chordates, Hemichordata &	15
	assorted topics	Lectures
	Phylogeny, salient features, classification (wherever applicable) up	
	to classes of the following phyla-	
	Mollusca	O
	• Bryozoa	
	Brachiopoda	
	• Echinodermata	
	Chaetognatha	
	Systematic position and affinities of Hemichordata.	
	Economic importance of Protozoa.	
	Mesenteries in Coelenterata.	
	Sense organs in Arthropoda.	
	Spines and Pedicellariae in Echinodermata.	
	Invertebrate larvae- larval forms of free living invertebrates, larval	
	forms of parasites, Strategies and evolutionary significance of	
	larval forms.	
Unit–III	Study of Animal Behavior	15
		Lectures
	Descriptive versus experimental approaches.	
	Reflexes and complex behaviour-	
	Latency, after discharge, summation, warm up, fatigue inhibition	
	and feedback control.	
	Instinctive Behaviour-	
	Fixed action pattern, Types of sign stimuli and releasers as	
	triggers, Genetic basis of instinctive	
	behavior.	
	Learning-	
	Classical conditioning experiment, latent and insight learning.	
	Social learning; Altruism.	
U"	Anti predator behaviour –	
	avoiding detection through colour and Markings (Mullerian	
	mimicry), Warning coloration, Batesian mimicry.	
	Biological communication : Forms of signals, vision, audition and	
	chemicals; Role of pheromone-Insects social organization;	

	pheromone effects in mammals- Lee Boot, Whitten, Bruce,	
	Collidge and Castro-Vandenberg effect/s.	
Unit –IV	Ecological Principles	15
		Lecture
	The Environment: Physical environment; biotic environment;	
	biotic and abiotic interactions	
	Habitat and Niche: Concept of habitat and niche; niche width and	
	overlap; fundamental and realized niche; resource partitioning;	
	character displacement.	
	Population Ecology: Characteristics of a population; population	
	growth curves; population regulation; life history strategies (r and	
	<i>k</i> selection); concept of meta population – demes and dispersal,	
	interdemic extinctions, age structured populations	
	Species Interactions: Types of interactions, interspecific	
	competition, herbivory, carnivory, pollination, symbiosis	
	Community Ecology: Nature of communities; community	
	structure and attributes; levels of species diversity and its	
	measurement; edges and ecotones.	
	Ecological Succession: Types; mechanisms; changes involved in	
	succession; concept of climax stage, Succession after Fire	
	Ecosystem Ecology: Ecosystem structure; primary production and	
	decomposition; structure and function of some Indian ecosystems:	
	terrestrial (forest, grassland) and aquatic (fresh water, marine,	
	estuarine).	
	Biogeography: Major terrestrial biomes; theory of island	-
	biogeography; biogeographical zones of India.	
	PRACTICAL	Credits
RPSZOOP101	Animal Systematics, Ethology and Ecology-I	2
1.	Study of anatomy: Sepia: Morphology, digestive system,	
	nervous system, reproductive system.	
	Mounting of: jaws, radula, statocyst and spermatophore	
2.	Study of systematic and major features of:	-
	Protozoa - Amoeba. Paramoecium.	
	Porifera - Grantia. Euplectella	
	Coelenterata- Porpita Sea-anemone	
	Mollusca- Chiton Mytilus	
	 Febinodermata- Starfish Sea urchin Sea cucumber 	
	Homishordata (Balanoglossus)	
	• Heinichordata (Balanogiossus)	

	Cephalochordata (Amphioxus)		
	• Agnatha- Petromyzon.		
	• Pisces- Hippocampus, Eel		
	Amphibia- Caecilian, Toad		(
	• Reptilia - Viper, Rattle snake, Crocodile/Alligator/Gharial	6	
3.	Study of invertebrate (earthworm /crab) heart.	A 0.	
4.	Effect of temperature on water loss in cockroach.		
5.	Determination of length-weight analysis in fishes.		
6.	Grooming behaviour in cockroaches/house flies		
7.	Social organization in insects: Termite nest and caste system.		
8.	Nest construction behaviour and altruism in red ants.		
9.	Culture of Daphnia & Rotifers as fish food animals.		
10.	Behavioral interaction between individuals of Siamese Fighter		
	fishes (Betta splendens)		
11.	Planting and maintaining of larval host plants of different butterfly		
	species.		
12.	Field activities: field visits- zoos/sanctuaries/national parks.		

REFERENCES:

- 1. K.V. Kardong, Vertebrate comparative anatomy, Function, Evolution, 3rd Ed. Tata McGraw Hill Publication.
- 2. F.H.Pough, C.M.Janis, J.B.Heiser: Vertebrate Life: 6th Ed. Pearson Education.
- 3. K.F.Liem, W.E.Bemis, W, F.Walker, L. Grande : Functional Anatomy of Vertebrates. An evolutionary perspective. 3rd Ed. Harcourt College Publishers.
- 4. J.Z.Young : The Life of Vertebrates, ELBS-Oxford Univ. Press.
- 5. T.J.Parkar and W.A.Haswell, McMillan: A Text Book of Zoology.
- 6. E.L.Jordan and P.S.Verma, S. Chand & Company: Chordate Zoology.
- 7. J.A.Pechenik: Biology of Invertebrates; 4th Ed, Tata McGraw Hill Publication.
- 8. Milton Hildebrand Wiley : International Analysis of Vertebrate Structure.
- 9. Russell, W.D. Hunter, McMillan: Life of Invertebrates.
- 10. Bares, R.D: Invertebrate Zoology, Saunders Publication.
- 11. Barrington, E J W, (1976): Structure and Functions of Invertebrates.
- 12. Hyman ,L.H : The invertebrates (all volumes), McGraw Hill, Philadelphia, USA
- 13. Huston, AM: Biological Diversity, Cambridge University Press, Cambridge
- 14. Kapoor V.C : Theory and Practice of Animal Taxonomy, Oxford and IBH Publ., Delhi

- 15. McNeely ,JA : Economics and Biological Diversity, IUCN, Gland, Switzerland
- Miller,S.A. and Harley,J.P. (2005) : Zoology. 6th Ed. McGraw Hill Higher Education, Boston, Toronto,Sydney
- 17. Prasad S.N: Life of Invertebrates, Vikas Publ. New Delhi
- Sinha, A.K, Adhikari S and Ganguly BB: Biology of Animals (vol. I & II), Central Book Agency, Kolkata
- 19. Young , J.Z : Life of Vertebrates, Clarendon Press, Oxford.
- 20. Alcock , J. (2001): Animal Behaviour, an Evolutionary Approach. Sinauer associates, INC. Sunderland, Massachusetts. USA
- 21. Bernard, C. (2004): Animal Behaviour, Mechanism, Development function and evolution. Pearson and Prentice Hall Publication. New York
- 22. Dunlap, J. C., Loros J. J. and Decoursey P. J. (2004): Chronobiology Biological Timekeeping. Sinuaer Associates, Inc. publishers, Sunderland, Massachusetts, USA
- 23. Goodenough, J.E., Mc Guire, B. and Wallace, R. A. (1993): Perspectives on Animal Behaviour. John Wiley and Sons, New York.
- 24. Mandal, F. B. (2010): Text book of Animal Behaviour. PHI Learning Private Limited, Estern Economy Edition. New Delhi -110001
- 25. Manning, A. and Dawkins M.S. (1997): Introduction to Animal Behaviour, 5th edition, Cambridge University Press. UK.
- Scott, G. (2005): Essential Animal Behaviour. Black Well Publishing, University of Hull, UK.
- 27. Stumpter, T. J. D. (2010): Collective Animal Behaviour; Princeton University Press. Oxford.

Course Code: RPSZOO102

Course Title: Biochemistry and Metabolism – I

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Understand and analyse the classification, structures, and functions of
	Carbohydrates, Lipids and Nucleic acids
CO 2	Enumerate the law of Biochemical thermodynamics, ETS chain reaction and
	oxidative phosphorylation concepts.
CO 3	Apply the knowledge of antioxidants and free radicals quenching to cancer
	research and anticancer activity.
CO 4	Compare and contrast between different metabolic pathways and understand
	its significance.
CO 5	Analyse and understand the different cell signalling pathways and apply it in
	the field of cancer genetics.
CO 6	Calculate Normality, Molarity and prepare solutions of different strengths.

Detailed Syllabus

RPSZOO102	Paper: II	Credits
	Biochemistry and Metabolism – I	4
Unit-I	Biomolecules- a structural and functional approach-I	15
•		Lectures
	Concepts:	
	Biological Macromolecules.	
	Polymerization and macromolecules.	
	• Central role of carbon.	
	Common functional groups.	
	• Common ring structure and isomerization in biological	
0	molecules.	
	Carbohydrates:	
	• Classification: mono-, oligo- and poly-saccharides.	
	• Monosaccharides- structure, classification, D- and L-	
	isomers, Anomers and mutarotation, open chain and ring	

EGE e • Excel

	forms, pyranose and furanose forms, reactions of	
	monosaccharides, glycocydic bonds and nomenclature.	
	Oligosaccharides, Polysaccharides- homo- and hetero-	
	polysaccharides.	
	Biological functions of carbohydrates.	(
	Lipids:	
	• Classification: simple and complex lipids	
	• Fatty acids- Even and odd carbon fatty acids, numbering the	
	carbon atoms, saturated and unsaturated fatty acids, cis- and	N
	trans-configuration, nomenclature and short hand	>
	representation of fatty acids.	
	• Acylglycerols- Mono-, di- and tri-glycerides, stereospecific	
	numbering of glycerols in glycerides, properties of	
	triacylglycerol.	
	• Complex lipids- Phospholipids, Sphingolipids, Sterols and	
	waxes, Amphipathic lipids Membrane lipid bilayers.	
	Biological functions of lipids.	
	Nucleic acids: Types- RNA and DNA.	
	• Components: Pentose, Nitrogenous bases, Nucleosides,	
	tautomeric forms of purines and pyrimidines.	
	• Structure of DNA: Watson and Crick model; different	
	forms of DNA double helix.	
	• Structure, types and functions of RNA.	
	Complex biomolecules	
	Glycoproteins: Blood group substances	
	Glycolipids: Gangliosides	
	Lipoproteins: Classification and functions- chilomicrons,	
+ (VLDL, LDL, HDL, and free fatty acid-albumin complex.	
Unit-II	Biochemical Thermodynamics	15
		Lectures
	Biochemical Thermodynamics:	
	Laws of thermodynamics, free energy, entropy, enthalpy,	
	exergonic and endergonic reactions	
	High energy compounds: ATP, ADP, ATP-ADP cycle, ATP-	
	AMP ratio.	
	Biological oxidation: Electron transport chain and	
	mitochondria; Oxidative phosphorylation- mechanism,	
	uncoupling of oxidative phosphorylation and its significance.	
	Free radicals, antioxidants and antioxidant system.	

	• Cell surface receptor		
	• Signaling through G-protein coupled receptors,		
	• Signal transduction pathways,		
	Second messengers		.0
	• Regulation of signaling pathways		SK
	• Bacterial and plant two-component systems		KO
	• Light signaling in plants		
	• Bacterial chemotaxis and quorum sensing.		
	• G Proteins in cell signaling	N	
	PRACTICAL	Credits	
RPSZOOP102	Biochemistry and Metabolism – I	2	
1.	Determination of reducing sugars by 3,5-dinitrosalicylic acid		
	(colorimetric) method.		
2.	Determination of glycogen in the given tissue (liver/ skeletal		
	muscle/ kidney/ brain).		
3.	Acid and enzyme hydrolysis of glycogen and colorimetric		
	estimation of the products by 3,5-DNSA method.		
4.	Determination of acid value of fats/ oils.		
5.	Determination of saponification value of fats/ oils		
6.	Carbohydrates in mammalian gut.		
7.	Agarose gel electrophoresis of DNA separated from suitable		
	samples.		
8.	Solutions and Buffers: Mode of expressing concentration of		
	solutions- Molarity (M), Molality (M), normality (N), Mass		
	concentration, mass fraction, mass percentage or %(w/w), % by		
	volume (v/v), parts per million (ppm) with practical exercises.		
	Types of solutions- Stock solutions practical exercises.		
9.	Preparation of buffers of different pH using Henderson-		
	Hasselbalch equation and its verification using pH meter.		

REFERENCES:

- 1. U. Satyanarayan : Biochemistry- 2nd Ed. 2002, Books and Allied Publ.
- 2. S.C. Rastogi : Biochemistry- 2nd Ed., Tata McGraw Hill.
- 3. J.I.Jain, S. Chand and Co. Publ : Fundamentals of Biochemistry- 3rd Ed. 1988.
- Lehninger, A. L., Nelson, D. L. and Cox, M. M., 2nd Edn.: Principles of Biochemistry, CBS Publishers and Distributors, New Delhi.

- 5. Conn, E. E., Stumpt, P. K., Bruencing, G. and Dol, R. G. (1995): Outlines of Biochemistry. John Wiley, Singapore.
- Murray, RK., Garner, D.K., Mayes P.A. and Rodwell, V.W. (2003): Harper's Illustrated Biochemistry, 26th Edn. Lange Medical Books, McGraw Hill, New York.
- 7. www.enzymesIndia.com

Course Code: RPSZOO103

Course Title: Genetics-I and Developmental Biology

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Understand in detail the principles of mendelian and non mendelian genetics.
CO 2	Correlate the concept of non-disjunction as a genetic anomaly with different
	genetic disorders and maternal age.
CO 3	Identify different cell cycle checkpoints and correlate them with cancer.
CO 4	Solve genetic problems based on three-point cross over, epistasis,
	complementation and multiple allelism.
CO 5	Understand and analyse different concepts in developmental biology and
	correlate it with evolution.

Detailed Syllabus

RPSZOO103	Paper: III	Credits
	Genetics-I and Developmental Biology	4
Unit-I	Genetics Chromosome theory of inheritance and Mendelism	15
	I-	Lectures
	MITOSIS- Interphase and cell cycle, genetic control of cell	
	cycle, stages of mitosis.	
	• Meiosis: An overview of meiosis, the first meiotic division,	
*	the second meiotic division, comparison of spermatogenesis	
	and oogenesis in animal cells.	
	non-disjunction and its implications	
	Organization of genetic material:	
	Structure of chromosomes	
	Chromosome number, shape and types	
	• Structural features of eukaryotic chromosomes (chromatids,	
	centromeres and telomeres; significance of telomeres;	
	telomeres and cancer)	
	Heterochromatin and euchromatin	
	In situ hybridization	
	• Giant chromosomes: lamp brush and polytene chromosomes	

	and salivary gland chromosome	
	Human chromosomes	
	Chromosome banding	
	Variations in chromosome structure and chromosome	
	number	
	Principles of Mendelian Genetics:	
	• Mendel's first law- segregation of allele	
	Mendel's second law- independent assortment	
	Monohybrid and dihybrid crosses	V
	Molecular basis of dominance (genotype, phenotype,	
	dominance, alleles)	
	• The cellular basis of segregation and independent	
	assortment	
	Genetics of cancer:	
	Relationship of cell cycle to cancer	
	• Oncogenes	
	Tumour suppressor genes	
	Mutator genes	
	Chemicals and radiations as carcinogens.	
Unit-II	Genetics- Extension of Mendelian genetics and non-	15
	Mondolian inhoritanco I	Lootunog
	Wendenan miler italice –1	Lectures
	Alleles and phenotypes:	Lectures
	Alleles and phenotypes: • Incomplete or partial dominance and co-dominance	Lectures
	Alleles and phenotypes: • Incomplete or partial dominance and co-dominance • Epistasis – Dominant and Recessive	Lectures
	Alleles and phenotypes: • Incomplete or partial dominance and co-dominance • Epistasis – Dominant and Recessive • Complementation analysis	Lectures
	Alleles and phenotypes: • Incomplete or partial dominance and co-dominance • Epistasis – Dominant and Recessive • Complementation analysis • Multiple alleles	Lectures
	Alleles and phenotypes: • Incomplete or partial dominance and co-dominance • Epistasis – Dominant and Recessive • Complementation analysis • Multiple alleles • Lethal alleles (recessive and dominant lethal alleles)	Lectures
	Alleles and phenotypes: • Incomplete or partial dominance and co-dominance • Epistasis – Dominant and Recessive • Complementation analysis • Multiple alleles • Lethal alleles (recessive and dominant lethal alleles) • Penetrance and expressivity	
	Alleles and phenotypes: • Incomplete or partial dominance and co-dominance • Epistasis – Dominant and Recessive • Complementation analysis • Multiple alleles • Lethal alleles (recessive and dominant lethal alleles) • Penetrance and expressivity Quantitative inheritance:	Lectures
	Alleles and phenotypes: • Incomplete or partial dominance and co-dominance • Epistasis – Dominant and Recessive • Complementation analysis • Multiple alleles • Lethal alleles (recessive and dominant lethal alleles) • Penetrance and expressivity Quantitative inheritance: • Traits controlled by many loci	Lectures
	Alleles and phenotypes: • Incomplete or partial dominance and co-dominance • Epistasis – Dominant and Recessive • Complementation analysis • Multiple alleles • Lethal alleles (recessive and dominant lethal alleles) • Penetrance and expressivity Quantitative inheritance: • Traits controlled by many loci • Location of polygenes	Lectures
andi	Alleles and phenotypes: • Incomplete or partial dominance and co-dominance • Epistasis – Dominant and Recessive • Complementation analysis • Multiple alleles • Lethal alleles (recessive and dominant lethal alleles) • Penetrance and expressivity Quantitative inheritance: • Traits controlled by many loci • Location of polygenes • Heritability: measurement of heritability	Lectures
anai	Alleles and phenotypes: • Incomplete or partial dominance and co-dominance • Epistasis – Dominant and Recessive • Complementation analysis • Multiple alleles • Lethal alleles (recessive and dominant lethal alleles) • Penetrance and expressivity Quantitative inheritance: • Traits controlled by many loci • Location of polygenes • Heritability: measurement of heritability Linkage, crossing over and gene mapping:	Lectures
	Alleles and phenotypes: • Incomplete or partial dominance and co-dominance • Epistasis – Dominant and Recessive • Complementation analysis • Multiple alleles • Lethal alleles (recessive and dominant lethal alleles) • Penetrance and expressivity Quantitative inheritance: • Traits controlled by many loci • Location of polygenes • Heritability: measurement of heritability Linkage, crossing over and gene mapping: • Chromosomal theory of linkage	Lectures
	Alleles and phenotypes: • Incomplete or partial dominance and co-dominance • Epistasis – Dominant and Recessive • Complementation analysis • Multiple alleles • Lethal alleles (recessive and dominant lethal alleles) • Penetrance and expressivity Quantitative inheritance: • Traits controlled by many loci • Location of polygenes • Heritability: measurement of heritability Linkage, crossing over and gene mapping: • Chromosomal theory of linkage • Mechanism and types of crossing over	Lectures
	Alleles and phenotypes: • Incomplete or partial dominance and co-dominance • Epistasis – Dominant and Recessive • Complementation analysis • Multiple alleles • Lethal alleles (recessive and dominant lethal alleles) • Penetrance and expressivity Quantitative inheritance: • Traits controlled by many loci • Location of polygenes • Heritability: measurement of heritability Linkage, crossing over and gene mapping: • Chromosomal theory of linkage • Mechanism and types of crossing over • Mapping in prokaryotes and bacterial viruses	Lectures
	Alleles and phenotypes: • Incomplete or partial dominance and co-dominance • Epistasis – Dominant and Recessive • Complementation analysis • Multiple alleles • Lethal alleles (recessive and dominant lethal alleles) • Penetrance and expressivity Quantitative inheritance: • Traits controlled by many loci • Location of polygenes • Heritability: measurement of heritability Linkage, crossing over and gene mapping: • Chromosomal theory of linkage • Mapping in prokaryotes and bacterial viruses • Gene mapping in eukaryotes (three point cross)	Lectures

	 Physical chromosome mapping: deletion mapping, somatic cell hybridization mapping, mapping by <i>in situ</i> hybridization; correspondence of genetic and physical maps. Practical application of chromosome mapping- tracking the inheritance of an ellele with coupled DNA markers. 	
	the inheritance of an allele with coupled DNA markers.	20
Unit-III	Evolution –I	15 Lectures
	Concept of evolution & theories of organic evolution (Lamarckism, Darwinism, De Vries mutation theory, Neo- Darwinism) Evolution of horse Human evolution Evolution of Elephant Human Migration and dispersal Molecular Evolution Molecular clock Circadian Rhythm Population and Evolutionary genetics: • Gene pool • Calculating allelic frequencies The Hardy-Weinberg equilibrium and mating systems (non- random mating assortative mating inbreeding dis-assortative	
	matings)	17
Unit -Iv	Developmental Biology	15 Lectures
annar	Basic concepts of Developmental Biology • cell fate, competence, • commitment, • trans- dedifferentiation, • Cell specification, • Potency, • induction, • determination and differentiation; • morphogenetic gradients; • cell fate and cell lineages; • Apoptosis	

	• genomic equivalence and the cytoplasmic determinants; imprinting: mutants and transgenic in analysis of	
	development.	
	Cell aggregation and differentiation in <i>Dictyostelium</i>	-
	Morphogenesis and cell adhesion- Differential cell affinity,	
	cadherins and cell adhesion.	
	Axis formation and pattern formation: Drosophila and Xenopus	
	Organogenesis	
	Vulva formation in <i>Caenorhabditis elegans</i>	O
	Regeneration as a replay of development stages	
	New theories of Aging	
		Cara l'Ar
	PRACTICAL	Credits
RPSZOOP103	Genetics-1 and Developmental Biology	2
1.	Culturing of Drosphila.	
2.	Culturing of <u>Caenorhabditis elegans</u>	
3.	Temporary squash preparation of onion/garlic root tip cells to	
	study stages of mitosis.	
4.	Temporary squash preparation of testis of cockroach/	
	Tradescantia pollen to study stages of meiosis	
5.	Demonstration of inter-chromosomal connections in the cells of]
	Tradescantia buds.	
6.	Temporary preparation of polytene chromosomes from salivary]
	gland cells of Chironomus larva	
7.	Study of chromosome structures in human karyotype.	1
8.	Observation of morphogenetic movements in chick embryo.	1
9.	Effect of drug Ephedra / Mucuna Prurines on heart rate of 72	1
	hours of chick embryo in vitro condition.	

<u>REFERENCES</u>:

- 1. Robert H. Tamarin: Prin. Of Genetics; 7th Ed. Tata McGraw Hill
- Elaine Johansen Mange and Arthur Mange : Basic Human Genetics; Indian Reprint; 1997; Rastogi Publ.
- 3. A.P. Jha : Genes and Evolution; MacMillon India
- 4. William S. Kluge: Concepts of Genetics; M.R.Cummings, Pearson Edu
- 5. F Scott. Gilbert, Sinauer Associates Inc : Developmental Biology.
- 6. T. Subramanian : Developmental Biology; Narosa Publ.
- 7. Philip Grant :Biology of Developing System; Holt Saunders International Ed.

- 8. M. W. Strikberger: Evolution; CBS Publ.
- 9. Sumitra Sen and Dipak Kumar Kar : Cytology and Genetics; Narosa Publ.
- 10. R.M. Twyman, Bios : Instant Notes- Developmental Biology; Scientific Pub. Ltd.
- 11. Epstein, R. J. (2003): Human Molecular Biology. Cambridge Univ. Press, Cambridge
- Watson, J. D., T. A. Baker S. P. Bell, A Cann, M. Levine and R. Losick, (2004). Molecular Biology of Gene V Edition, Pearson Education RH Ltd. India.
- 13. Alberts, B, Johnson, J Lewis, M. Raff, K Roberts and P. Watter. (2014): Molecular Biology of the cell. 6th edition. Garland Science, New York.
- 14. Lodish, H., A. Berk, C.A Kaiser, M.P. Scott, A Bretscher, H. Ploegh, P. Matsudaira. (2016):8th Edition, Molecular Cell Biology. W. H. Freeman and Co., N. Y.
- 15. Brachet, J. (1985) Molecular Cytology, Academic Press, N. Y.
- 16. Pollard, T. D. and W. C. Earnshaw.(2002): Cell Biology. Saunders
- 17. Daniel J. Fairbanks and W.R. Anderson : Genetics;. Wadsworth Publ.
- Elaine Johansen Mange and Arthur Mange : Basic Human Genetics; Indian Reprint; 1997; Rastogi Publ.
- 19. A.P. Jha : Genes and Evolution; MacMillon India.

Course Code: RPSZOO104

Course Title: Applied Zoology-I

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Understand and comprehend the principle, working and applications of
	Microtomy, Microscopy and centrifugation.
CO 2	Compare and contrast between different types of microscopes and
	centrifuges.
CO 3	Develop skills with regards to computer applications like data analysis and
	SPSS in biostats and solve problems based on t test, z test, chi square test,
	ANOVA etc.
CO 4	Develop skills to write research papers and literature reviews.

Detailed Syllabus

RPSZOO104	Paper: IV	Credits
	Applied Biology	4
Unit-I	Instrumentation- Microtomy, microscopy, centrifugation-I	15
		Lectures
	Microtomy: Tissue fixation, dehydration, clearing, infiltration,	
	embedding for paraffin method, sectioning, mounting, staining-	
	differential and specific.	
•	Cryopreservation	
	Principles and applications of microscopy: Light microscopy,	
	phase contrast microscopy, fluorescence microscopy,	
	polarization microscopy, confocal scanning microscopy,	
	transmission electron microscopy, specimen preparation for	
	electron microscopy, scanning electron microscopy.	
	Principles and applications of centrifugation: Basic principles	
0	of centrifugation, Low speed and high speed centrifuges,	
	ultracentrifuge, application of centrifugation-preparative	
	techniques, analytical measurements; care of centrifuges and	
	rotors.	

EGE e • Excel

Unit -II	Biostatistics and computer application	15
		Lectures
	Arithmetic mean, mode, median, range, variance, standard	
	deviation and standard error, coefficient of variation.	
	Testing of hypothesis: Statement for testing the hypothesis,	
	statistical validation using student's "t" test, 'z' test, chi square	
	test, simple and multiple correlation, regression analysis,	
	ANOVA, Meaning of level of significance.	
	Computer applications: MS word, EXCEL, Power point, SPSS	
	uses	
Unit- III	Good Laboratory Practices and Research Methodology- I	15
		Lectures
	Safety in laboratories, Use, Care and Maintenance of common	
	laboratory equipments: Microscope, pH meter, colorimeter/	
	spectrophotometer, analytical balance, centrifuge,	
	electrophoresis apparatus, glassware; general safety measures;	
	personal protection: chemical hazards: spillage and waste	
	disposal: first aid.	
	Research methodology : Meaning of research: objective of	
	research: motivation in research: types of research: research	
	approaches: significance of research: research methods versus	
	methodology: Descarch and scientific methods: Importance of	
	Inemodology, Research and scientific methods, importance of	
	knowing now research is done; Research process; Criteria for	
	good research.	
	Research problem and research design: Selecting research	
	problem; necessity of defining a problem; techniques involved in	
	defining the problem; meaning of research design; need for	
•	research design; important concepts related to research design;	
	different research designs; basic principles of experimental	
	design; important experimental designs.	
Unit- IV	Intellectual Property Rights	15
		Lectures
	Introduction to intellectual property; types of IP: patents,	
	trademarks, copyright & related rights, industrial design,	
	traditional knowledge, geographical indications, protection of	
	International framework for the protection of ID:	
	IP as a factor in R&D IPs of relevance to biotechnology and few	
	Case studies;	
	I miroduction to history of GATT, wTO, wIPO and TKIPS;	

	Concept of 'prior art': invention in context of "prior art"; Patent databases - country-wise patent searches (USPTO, EPO, India); analysis and report formation	
RSZOOP104	PRACTICAL Applied Zoology-I	Credits 2
1.	Identification of pictograms, symbols and signs of safety in laboratory practice.	Ne
2.	Microtomy: Tissue preservation and fixation, dehydration, infiltration, paraffin embedding and block preparation, sectioning, staining	Ŋ,
3.	Determination of pKa of weak acid.	
4.	Colorimeter: Selection of best filter.	
5.	Colorimeter: Determination of unknown concentration of solute	
6.	Biostatistics problems- Z-Test. T-Test, Chi Square.	
7.	Data analysis using MS Excel/ SPSS	
8.	Writing a Review Research Paper.	

<u>REFERENCES:</u>-

- 1. Modern Experimental Biochemistry; 3rd Ed. Rodney Boyer, Pearson Education.
- 2. Principles and Techniques of Practical Biochemistry. Wilson and Walker, Cambridge Univ. Press.
- Biological Science; 3rd Ed. D.J.Taylor, N.P.O.Green, G.W.Stou, Cambridge Univ. Press
- Cell and Molecular Biology- Concepts and Experiments, Gerald Karp. John Wiley & Co.
- 5. Introductory Practical Biochemistry; S.K.Swahney, Randhir Sing. Narosa Publ.
- 6. An Introduction to Practical Biochemistry; 3rd Ed. David Plummer. Tata McGraw Hill
- 7. Practical Research Planning and Design; 2nd Ed. Paul D. Leedy. Macmillan Publ.
- 8. Elementary Practical Organic Chemistry Part I: Small Scale Preparations. 2nd Ed. Arthur I. Vogel. CBS Publ. and Distributors.
- Research Methodology. Methods and Techniques; C.R.Kothari. Wiley Eastern Ltd. Mumbai.

- 10. Biosafety and bioethics (2006) Rajmohan Joshi. Gyan Publishing House.
- Biotechnology and Patent laws:patenting living beings (2008) Sreenivasulu, N.S. and Raju C.B. Manupatra Publishers
- 12. Complete Reference to Intellectual Property Rights Laws. (2007). Snow White Publication Oct. Craig, W., Tepfer, M., Degrassi, G., & Ripandelli, D. (2008).
- 13. An Overview of General divisions/csurv/geac/annex-5.pdf
- Intellectual property law (2008) Lionel Bently, Brad Sherman. Oxford University Press.
- 15. International Union for the Protection of New Varieties of Plants. http://www.upov.int
- 16. Karen F. Greif and Jon F. Merz, Current Controversies in the Biological Sciences -Case Studies of Policy Challenges from New Technologies, MIT Press
- 17. Kuhse, H. (2010). Bioethics: an Anthology. Malden, MA: Blackwell.
- 18. National Biodiversity Authority. http://www.nbaindia.org
- Bailey, N.T.J., 1994. Statistical Methods in Biology-II Ed., Cambridge University Press
- 20. Samuel, M.L., 1991. Statistics for Life Sciences, Dellen Publishing Co, San Francisco.
- 21. Arthur M. Lesk, 2002. Introduction to Bioinformatics, Oxford University Press, New York
- 22. Satish Jain, O level made simple: information Technology, BPB publications

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr. No.	Evaluation type	Marks	C
1.	Two Assignments/Case study/Project/Research paper review	20	
2.	One class Test (multiple choice objective question)	20	0

B) External Examination- 60%- 60 Marks

Semester End Theory Examination:

- 1. Duration These examinations shall be of **2hours 30 mins** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Questions	Options	Marks	Questions on
Q.1	Any 1 out of 2	12	Unit- I
Q.2	Any 1 out of 2	12	Unit- II
Q.3	Any 1 out of 2	12	Unit- III
Q.4	Any 1 out of 2	12	Unit- IV
Q.5	3 short notes out of 5	12	All Units

Practical Examination Pattern:

C) External Examination: 50 Marks

	Particulars	Marks
	Journal	05
	Experimental tasks/ Viva	45
l	Total	50

Overall Distribution Examination & Marks Pattern

Semester-I

Course	RPSZOO101		RPSZOO101 RPSZOO102 RPSZOO103		RPSZOO104		Grand Total		
	Internal	External	Internal	External	Internal	External	Internal	External	Total
Theory	40	60	40	60	40	60	40	60	400
Practical	50		5	50	5	50	5	50	200

Paper Code	Unit	Торіс	Credit
		Animal Systematics and Ethology – II	
	Ι	Phylogeny, Systematics of non-chordates and assorted	
Paper I		topic-II	
RPSZOO201	II	Phylogeny of Protochordates, Agnatha and assorted	4
		topics- II	
	III	Phylogeny, Systematics of Chordates and Assorted	
		topics- II	
	IV	Animal behavior-II	
		Biochemistry and Metabolism- II	
	Ι	Biomolecules- a structural and functional approach-II	
	II	Enzymes and Enzyme kinetics	4
Paper II	III	Metabolic pathways and Integration of metabolism	
RPSZOO202	IV	Regulation of metabolism and inborn errors of	
		metabolism	
		Molecular Biology and Genetics–II	
	Ι	Molecular Biology- I	
Paper III	II	Molecular Biology- II	4
RPSZOO203	III	Genetic basis of syndromes and disorders	
	IV	Evolution-II	
		Applied Zoology-II	
	Ι	Instrumentation-Principles and application of	
		chromatography - II	4
Paper IV	II	Instrumentation-Principles and application of	
RPSZOO204		chromatography and Electrophoresis- III	
	III	Research Methodology-II	
	IV	Bioinformatics	
RPSZOOP201		Animal Systematics and Ethology – II	2
		Dischamistry and Matcheliam II	2
RPSZOOP202		Diochemistry and Metabolism- II	<u> </u>
RPSZOOP202 RPSZOOP203	\sim	Molecular Biology and Genetics–II	$\frac{2}{2}$
RPSZOOP202 RPSZOOP203 RPSZOOP204	3	Molecular Biology and Genetics–II Applied Zoology-II	$\frac{\frac{2}{2}}{2}$

Semester II Academic year 2020-2021

Course Code: RPSZOO201

Course Title: Animal Systematics and Ethology- II

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Enumerate& classify the characteristics of different non-chordates and
	chordates.
CO 2	Compare and contrast between phylogeny of different protochordates.
CO 3	Interrelate the working and different systems of non-chordates and link it
	with their evolutionary process
CO 4	Understand and comprehend the broad concepts of animal behaviour and its
	applications in various fields of research.
CO 5	Correlate the different aspects of animal behaviour, social behaviour and
	learning or memory to evolutionary aspect.

Detailed syllabus

RPSZOO201	Paper: I	Credits
	Animal Systematics and Ethology – II	4
Unit I	Phylogeny, Systematics of non-chordates and	15
	assorted topic-II	Lectures
	Platyhelminthes and Nemethelminthes	
	Acanthocephala	
	Annelida	
	Sipunculoidea	
+ (Arthropoda	
	Onychophora - Peripatus, A connecting link between Annelida	
	and Arthropoda.	
Unit II	Phylogeny of Protochordates, Agnatha and assorted topics-	15
	II	Lectures
	Urochordata and its similarities with other subphyla.	
0-1	Cephalochordata and its similarities with other subphyla	
	Vertebrate ancestry and origin of Vertebrates.	
	Changes leading to first vertebrates	
	Salient features and phylogeny of Ostracoderms.]
	Affinities of Cyclostomes-]

	resemblance with Cephalochordates	
	differences from fishes	
	• vertebrate characters specialized characters	
Unit-III	Phylogeny, Systematics of Chordates and Assorted topics- II	15 Lectures
	Warm blooded reptiles. Archaeopteryx- a connecting link	
	between Reptiles and Aves.	
	Salient features of class Aves and classification up to subclass.	V í
	Origin of flight (theory of cursorial & arboreal origin).	
	Birds as glorified reptiles.	
	Egg laying mammals- connecting link between reptiles and mammals.	
	Classification of mammals up to orders.	1
	Dentition in mammals.	1
	Walking gait (Plantigrade, Digitigrade, and Unguligrade)	-
Unit- IV	Animal behavior-II	15
	XO	Lectures
	Development of behaviour:	
	Significance of animal behaviour, influence of environment,	
	hormones and genes. Cognition, neural control of behaviour,	
	adaptiveness of behaviour.	
	Learning and memory:	
	Innate behaviour (orientation, kineses, taxes, motivation,	
	tropism, reflex and nest building), learned behaviour	
	(sensitization and habituation, associative learning, imprinting,	
	latent and insight learning, reasoning, instrumental conditioning,	
* (trial-and-error, discrimination, biased and language learning),	
	neural mechanism of learning. Memory- nature, types and	
	anatomy of memory, and memory storage.	
	Evolution and Genetics of behaviour: Genes and behavioral	
	evolution, Hamilton's rule, kin selection, altruism, cost and	
	benefits of social life, sex and sexual selection, phylogeny of	
N	behaviour, genetic control of behaviour (single and multiple	
	gene effect). Genetics of burrow shape in Oldfield mouse and	
	Deer mouse.	
	Social behaviour: Types of social groups, advantages of	
	grouping, origin and roots to sociality, social organization-	
	insects (honey bees, termites) and primates. Cost and benefits of	

	sociality, and evolution of eusocial behavior.	
RPSZOOP201	PRACTICAL Animal Systematics and Ethology – II	Credits 2
1.	Study of animal type*: <u>Periplanata americana</u> : Morphology, digestive system, nervous system, reproductive system and life history. Mountings of- cornea, salivary glands, gonapophyses, spermatheca	100
2.	 Study of systematics and major features of: Helminthes (Planaria, Liverfluke, Tapeworm, Ascaris, Trichinella) Annelida (Nereis, Earthworm, Leech); Sipunculoidea: (Sipunculus), Arthropoda (Lobster, Balanus, Crab, Lepas, Scorpion, Spider, Limulus, Centipede, Millipede, Beetle) Urochordata (Simple Ascidian, Salpa/ Doliolum); Cephalochordata (Amphioxus). 	
3.	Study of Larval forms: Larvae of Helminthes- Miracidium, Sporocyst, Redia, Cercaria, Metacercaria; Trochophore, Crustacean larvae, Ascidian tadpole.	
4.	Study of nervous system of prawn.	1
5.	Organoleptic test for fishes.	1
6.	Study of social behavior of ants.	1
7.	To study the repellent activity of lemon extract against the cockroach (<i>Periplaneta americana</i>).	

REFERENCES:

- 1. K.V. Kardong, Vertebrate comparative anatomy, Function, Evolution, 3rd Ed. Tata McGraw Hill Publication.
- 2. F.H.Pough, C.M.Janis, J.B.Heiser: Vertebrate Life: 6th Ed. Pearson Education.
- 3. K.F.Liem, W.E.Bemis, W, F.Walker, L. Grande : Functional Anatomy of Vertebrates. An evolutionary perspective. 3rd Ed. Harcourt College Publishers.
- 4. J.Z. Young : The Life of Vertebrates, ELBS-Oxford Univ. Press.
- 5. T.J.Parkar and W.A.Haswell, McMillan: A Text Book of Zoology.
- 6. E.L.Jordan and P.S.Verma, S. Chand & Company: Chordate Zoology.
- 7. J.A.Pechenik: Biology of Invertebrates; 4th Ed, Tata McGraw Hill Publication.
- 8. Milton Hildebrand Wiley : International Analysis of Vertebrate Structure.

- 9. Russell, W.D. Hunter, McMillan: Life of Invertebrates.
- 10. Bares, R.D: Invertebrate Zoology, Saunders Publication.
- 11. Barrington, E J W, (1976): Structure and Functions of Invertebrates.
- 12. Hyman ,L.H : The invertebrates (all volumes), McGraw Hill, Philadelphia, USA
- 13. Huston, AM: Biological Diversity, Cambridge University Press, Cambridge
- 14. Kapoor V.C : Theory and Practice of Animal Taxonomy, Oxford and IBH Publ., Delhi
- 15. McNeely ,JA : Economics and Biological Diversity, IUCN, Gland, Switzerland
- Miller,S.A. and Harley,J.P. (2005) : Zoology. 6th Ed. McGraw Hill Higher Education, Boston, Toronto,Sydney
- 17. Prasad S.N: Life of Invertebrates, Vikas Publ. New Delhi
- 18. Sinha, A.K, Adhikari S and Ganguly BB: Biology of Animals (vol. I & II), Central Book Agency, Kolkata
- 19. Young , J.Z : Life of Vertebrates, Clarendon Press, Oxford.
- 20. Alcock , J. (2001): Animal Behaviour, an Evolutionary Approach. Sinauer associates, INC. Sunderland, Massachusetts. USA
- Bernard, C. (2004): Animal Behaviour, Mechanism, Development function and evolution.
 Pearson and Prentice Hall Publication. New York
- 22. Dunlap, J. C., Loros J. J. and Decoursey P. J. (2004): Chronobiology Biological Timekeeping. Sinuaer Associates, Inc. publishers, Sunderland, Massachusetts, USA
- 23. Goodenough, J.E., Mc Guire, B. and Wallace, R. A. (1993): Perspectives on Animal Behaviour. John Wiley and Sons, New York.
- Mandal, F. B. (2010): Text book of Animal Behaviour. PHI Learning Private Limited, Estern Economy Edition. New Delhi -110001
- Manning, A. and Dawkins M.S. (1997): Introduction to Animal Behaviour, 5th edition, Cambridge University Press. UK.
- 26. Scott, G. (2005): Essential Animal Behaviour. Black Well Publishing, University of Hull, UK.
- 27. Stumpter, T. J. D. (2010): Collective Animal Behaviour; Princeton University Press. Oxford.

Course Code: RPSZOO202

Course Title: Biochemistry and Metabolism- II

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION			
OUTCOME	Upon successful completion of this course, learners will be able to;			
CO 1	Understand and analyse the classification, structures, and functions of			
	Proteins and enzymes.			
CO 2	Enumerate and understand the concept of enzyme kinetics.			
CO 3	Compare and contrast between competitive, non-competitive, and uncompetitive mechanism of enzyme kinetics and correlate it with Vmax and Km.			
CO 4	Compare and contrast between different metabolic pathways and understand its significance.			
CO 5	Analyse and understand the different inborn errors of metabolism			

Detailed syllabus

RPSZOO202	Paper-II	Credits
	Biochemistry and Metabolism- II	4
Unit –I	Biomolecules- a structural and functional approach-II	15
		Lectures
	Proteins as polymers of amino acids	
	• Amino acids: structure, classification based on structure,	
	• polarity, nutritional requirement and metabolic fate;	
	• properties of amino acids;	
	• derivatives of amino acids, non-transcribed amino acids as	
	protein constituents,	
	D-amino acids.	
	Organization of protein structure:	
	• Primary structure and peptide bond,	
	• secondary, tertiary and quaternary structure;	
	• conjugate proteins- haemoglobin, cytochromes, myoglobin;	
	bonds involved in protein organization.	
	Properties of proteins: classification, denaturation and protein	
	folding.	

peptides: glutathione, octa-, nona-, and deca-peptides. Ramachandran plot. Unit – II Enzymes and Enzyme kinetics 15 Lectures Mechanism of enzyme catalysis. Enzyme kinetics: Mechanism of enzyme catalysis. Enzyme kinetics: Michaelis Menton equation; Lineweaver-Burk plot; Enzyme kinetics: Incompetitive and competitive inhibitions); factors affecting enzyme activity; enzyme activation and inhibition. Regulatory enzymes: covalently modulated, allosteric regulation, Isoenzymes (LDH, CK, ALP, ADH) Non-protein enzymes- Riborymes, Ribonucleas & Peptidyl transferase. 15 Unit – III Metabolism f Lectures Protein Metabolism: Metabolism of amino acids: Amino acid pool, transamination; in metabolism of amino acids; if ate of carbon skeleton of amino acids; if ate of carbon skeleton of amino acids; fate of carbon skeleton of amino acids; if ate of carbon skeleton of amino acids. Metabolism of nucleotides Synthesis of ribonucleotides to deoxyribonucleotides. Synthesis of ribonucleotides Synthesis of ribonucleotides Enzyme year without and supply; Integration of Metabolism, Energy demand and supply; Integration of matoolism; Integration of major metabolism; Organ		Biological functions of proteins. Biologically important	
Ramachandran plot. I5 Unit – II Enzymes and Enzyme kinetics 15 Mechanism of enzyme catalysis. Enzyme kinetics: Michaelis Menton equation; Lineweaver-Burk plot; significance of Vmax and Km(including non-competitive, Uncompetitive and competitive inhibitions); enzyme activation and inhibition. Regulatory enzymes: covalently modulated, allosteric regulation, Isoenzymes (LDH, CK, ALP, ADH) Non-protein enzymes: covalently modulated, allosteric regulation, Isoenzymes (LDH, CK, ALP, ADH) Non-protein enzymes. Ribozymes, Ribonucleas & Peptidyl transferase. 15 Unit – III Metabolic pathways and Integration of metabolism 15 Lectures Protein Metabolismi 15 Unit – III Metabolism of amino acids: Amino acid pool, transamination; e metabolism of branched chain amino acids; • fate of carbon skeleton of amino acids. Metabolism of nucleic acids: 6 • Synthesis of ribonucleotides - a brief idea of <i>de novo</i> pathway and salvation pathway. Conversion of ribonucleotides to deoxyribonucleotides. • Degradation of mucleotides Integration of metabolism, Energy demand and supply; Integration of matbolism, Energy metabolism; Intermediary metabolism; Organ specialization and metabolic integration. Metabolism in starvation		peptides: glutathione, octa-, nona-, and deca-peptides.	
Unit – II Enzymes and Enzyme kinetics 15 Lectures Mechanism of enzyme catalysis. Enzyme kinetics: Mechanism of enzyme catalysis. Enzyme kinetics: Michaelis Menton equation; Lineweaver-Burk plot; significance of Vmax and Km(including non-competitive, Uncompetitive and competitive inhibitions); factors affecting enzyme activity; enzyme activation and inhibition. regulatory enzymes: covalently modulated, allosteric regulation, Isoenzymes (LDH, CK, ALP, ADH) Non-protein enzymes- Ribozymes, Ribonucleas & Peptidyl transferase. Unit – III Metabolic pathways and Integration of metabolism 15 Lectures Protein Metabolism; Metabolism of amino acids: Amino acid pool, transamination; oxidative and non- oxidative deamination; metabolism of branched chain amino acids; fate of carbon skeleton of amino acids; fate of carbon skeleton of amino acids; Synthesis of ribonucleotides - a brief idea of <i>de novo</i> pathway and salvation pathway. Conversion of ribonucleotides to deoxyribonucleotides. Degradation of nucleotides Integration of matebolism, Energy demand and supply; Integration of major metabolism, Energy demand and supply; Integration of major metabolism, Energy demand and supply; Integration of major metabolism, Energy demand and supply;		Ramachandran plot.	
Mechanism of enzyme catalysis. Enzyme kinetics: • Michaelis Menton equation; • Lineweaver-Burk plot; • significance of Vmax and Km(including non-competitive, Uncompetitive and competitive inhibitions); • factors affecting enzyme activity; • enzyme activation and inhibition. • Regulatory enzymes: covalently modulated, allosteric regulation, Isoenzymes (LDH, CK, ALP, ADH) Non-protein enzymes-Ribozymes, Ribonucleas & Peptidyl transferase. Unit – III Metabolic pathways and Integration of metabolism 15 Lectures Protein Metabolism: • • Metabolism of amino acids: Amino acid pool, transamination; • • oxidative and non- oxidative deamination; • • metabolism of branched chain amino acids; • • fate of carbon skeleton of amino acids. Metabolism of nucleic acids: • Synthesis of ribonucleotides- a brief idea of <i>de novo</i> pathway and salvation pathway. • • Conversion of ribonucleotides to deoxyribonucleotides. • • Degradation of nucleotides Integration of major metabolis, Energy demand and supply; Integration of major metabolic pathways of energy metabolism; Intermediary metabolism; Intermediary metabolism;	Unit – II	Enzymes and Enzyme kinetics	15 Lectures
Enzyme kinetics: Michaelis Menton equation; Lineweaver-Burk plot; significance of Vmax and Km(including non-competitive, Uncompetitive and competitive inhibitions); factors affecting enzyme activity; enzyme activation and inhibition. Regulatory enzymes; covalently modulated, allosteric regulation, Isoenzymes (LDH, CK, ALP, ADH) Non-protein enzymes- Ribozymes, Ribonucleas & Peptidyl transferase. Unit – III Metabolic pathways and Integration of metabolism 15 Lectures Protein Metabolism: 15 oxidative and non- oxidative deamination; netabolism of branched chain amino acids; fate of carbon skeleton of amino acids. Metabolism of mamonia: Urea eycle. Metabolism of nucleotides- a brief idea of <i>de novo</i> pathway and salvation pathway. Conversion of ribonucleotides to deoxyribonucleotides. Degradation of nucleotides Degradation of matabolism; Integration of matabolism; Integration of major metabolic pathways of energy metabolism; Integration of major metabolic integration.		Mechanism of enzyme catalysis.	~0
 Michaelis Menton equation; Lineweaver-Burk plot; significance of Vmax and Km(including non-competitive, Uncompetitive and competitive inhibitions); factors affecting enzyme activity; enzyme activation and inhibition. Regulatory enzymes: covalently modulated, allosteric regulation, Isoenzymes (LDH, CK, ALP, ADH) Non-protein enzymes- Ribozymes, Ribonucleas & Peptidyl transferase. Unit – III Metabolic pathways and Integration of metabolism 15 Lectures Protein Metabolism: Metabolism of amino acids: Amino acid pool, transamination; oxidative and non- oxidative deamination; metabolism of branched chain amino acids; fate of carbon skeleton of amino acids. Metabolism of nucleic acids: Synthesis of ribonucleotides - a brief idea of <i>de novo</i> pathway and salvation pathway. Conversion of ribonucleotides to deoxyribonucleotides. Degradation of nucleotides Integration of Metabolism; Energy demand and supply; Integration of major metabolic pathways of energy metabolism; Intermediary metabolism; Organ specialization and metabolic integration.		Enzyme kinetics:	
 Lineweaver-Burk plot; significance of Vmax and Km(including non-competitive, Uncompetitive and competitive inhibitions); factors affecting enzyme activity; enzyme activation and inhibition. Regulatory enzymes: covalently modulated, allosteric regulation, Isoenzymes (LDH, CK, ALP, ADH) Non-protein enzymes- Ribozymes, Ribonucleas & Peptidyl transferase. Unit – III Metabolic pathways and Integration of metabolism 15 Lectures Protein Metabolism: Metabolism of amino acids: Amino acid pool, transamination; oxidative and non-oxidative deamination; metabolism of branched chain amino acids; fate of carbon skeleton of amino acids. Metabolism of nucleic acids: Synthesis of ribonucleotides- a brief idea of <i>de novo</i> pathway and salvation pathway. Conversion of ribonucleotides to deoxyribonucleotides. Degradation of metabolism, Energy demand and supply; Integration of major metabolic pathways of energy metabolism; Intermediary metabolism; Organ specialization and metabolic integration. 		Michaelis Menton equation;	
 significance of Vmax and Km(including non-competitive, Uncompetitive and competitive inhibitions); factors affecting enzyme activity; enzyme activation and inhibition. Regulatory enzymes: covalently modulated, allosteric regulation, Isoenzymes (LDH, CK, ALP, ADH) Non-protein enzymes- Ribozymes, Ribonucleas & Peptidyl transferase. Unit – III Metabolic pathways and Integration of metabolism 15 Lectures Protein Metabolism: Metabolism of amino acids: Amino acid pool, transamination; oxidative and non- oxidative deamination; metabolism of branched chain amino acids; fate of carbon skeleton of amino acids. Metabolism of nucleic acids: Synthesis of ribonucleotides- a brief idea of <i>de novo</i> pathway and salvation pathway. Conversion of ribonucleotides to deoxyribonucleotides. Degradation of metabolism, Energy demand and supply; Integration of major metabolic pathways of energy metabolism; Intermediary metabolism; Organ specialization and metabolic integration. 		• Lineweaver-Burk plot;	
Uncompetitive and competitive inhibitions); • factors affecting enzyme activity; • enzyme activation and inhibition. • Regulatory enzymes: covalently modulated, allosteric regulation, Isoenzymes (LDH, CK, ALP, ADH) Non-protein enzymes- Ribozymes, Ribonucleas & Peptidyl transferase. 15 Unit – III Metabolic pathways and Integration of metabolism 15 Lectures Protein Metabolism: 15 • Metabolism of amino acids: Amino acid pool, transamination; • oxidative and non- oxidative deamination; 16 • oxidative and non- oxidative deamination; • metabolism of branched chain amino acids; 17 • fate of carbon skeleton of amino acids. Metabolism of anunoiacids. 16 Urea cycle. Metabolism of anulcic acids: • Synthesis of ribonucleotides- a brief idea of <i>de novo</i> pathway and salvation pathway. • Conversion of ribonucleotides to deoxyribonucleotides. • Degradation of mucleotides Integration of Metabolism, Energy demand and supply; Integration of major metabolic pathways of energy metabolism; Integration of major metabolic integration. Metabolism in starvation		• significance of Vmax and Km(including non-competitive,	
factors affecting enzyme activity; enzyme activation and inhibition. Regulatory enzymes: covalently modulated, allosteric regulation, Isoenzymes (LDH, CK, ALP, ADH) Non-protein enzymes- Ribozymes, Ribonucleas & Peptidyl transferase. Unit – III Metabolic pathways and Integration of metabolism Protein Metabolism: Metabolism of amino acids: Amino acid pool, transamination; oxidative and non- oxidative deamination; oxidative and non- oxidative deamination; metabolism of branched chain amino acids; fate of carbon skeleton of amino acids. Metabolism of nucleic acids: Synthesis of ribonucleotides- a brief idea of <i>de novo</i> pathway and salvation pathway. Conversion of ribonucleotides Integration of Metabolism; Integration of Metabolism, Energy demand and supply; Integration of major metabolic pathways of energy metabolism; Intermediary metabolism; Organ specialization and metabolic integration. Metabolism in starvation		Uncompetitive and competitive inhibitions);	
 enzyme activation and inhibition. Regulatory enzymes: covalently modulated, allosteric regulation, Isoenzymes (LDH, CK, ALP, ADH) Non-protein enzymes- Ribozymes, Ribonucleas & Peptidyl transferase. Unit – III Metabolic pathways and Integration of metabolism 15 Lectures Protein Metabolismi: Metabolism of amino acids: Amino acid pool, transamination; oxidative and non- oxidative deamination; metabolism of branched chain amino acids; fate of carbon skeleton of amino acids. Metabolism of nucleic acids: Synthesis of ribonucleotides- a brief idea of <i>de novo</i> pathway and salvation pathway. Conversion of ribonucleotides to deoxyribonucleotides. Degradation of major metabolism, Energy demand and supply; Integration of major metabolism; Organ specialization and metabolic integration. 		• factors affecting enzyme activity;	
• Regulatory enzymes: covalently modulated, allosteric regulation, Isoenzymes (LDH, CK, ALP, ADH) Non-protein enzymes- Ribozymes, Ribonucleas & Peptidyl transferase. Unit – III Metabolic pathways and Integration of metabolism 15 Lectures Protein Metabolism: • • Metabolism of amino acids: Amino acid pool, transamination; • • oxidative and non- oxidative deamination; • • metabolism of branched chain amino acids; • • fate of carbon skeleton of amino acids. Metabolism of ammonia: Urea cycle. Metabolism of nucleic acids: • Synthesis of ribonucleotides a brief idea of <i>de novo</i> pathway and salvation pathway. • • Conversion of ribonucleotides to deoxyribonucleotides. • • Degradation of mucleotides Integration of Metabolism; Integration of major metabolic pathways of energy metabolism; Intermediary metabolism; Organ specialization and metabolic integration. Metabolism in starvation		enzyme activation and inhibition.	
regulation, Isoenzymes (LDH, CK, ALP, ADH) Non-protein enzymes- Ribozymes, Ribonucleas & Peptidyl transferase. Unit – III Metabolic pathways and Integration of metabolism 15 Lectures Protein Metabolism; • Metabolism of amino acids: Amino acid pool, transamination; • oxidative and non- oxidative deamination; • oxidative and non- oxidative deamination; • oxidative and non- oxidative deamination; • metabolism of branched chain amino acids; • fate of carbon skeleton of amino acids. Metabolism of ammonia: • Urea cycle. Metabolism of nucleic acids: • Synthesis of ribonucleotides- a brief idea of <i>de novo</i> pathway and salvation pathway. • Conversion of ribonucleotides to deoxyribonucleotides. • Degradation of nucleotides • Degradation of major metabolism, Energy demand and supply; Integration of Metabolism; Integration of major metabolic pathways of energy metabolism; Integration and metabolic integration. Metabolism in starvation • Organ specialization and metabolic integration.		• Regulatory enzymes: covalently modulated, allosteric	
Non-protein enzymes- Ribozymes, Ribonucleas & Peptidyl transferase. Unit – III Metabolic pathways and Integration of metabolism 15 Protein Metabolism; Image: Comparison of the comparison of th		regulation, Isoenzymes (LDH, CK, ALP, ADH)	
transferase. Image: Constraint of the second se		Non-protein enzymes- Ribozymes, Ribonucleas & Peptidyl	
Unit – III Metabolic pathways and Integration of metabolism 15 Protein Metabolism: • Netabolism of amino acids: Amino acid pool, transamination; • • Metabolism of amino acids: Amino acid pool, transamination; • oxidative and non- oxidative deamination; • • oxidative and non- oxidative deamination; • metabolism of branched chain amino acids; • • fate of carbon skeleton of amino acids. Metabolism of ammonia: • • Urea cycle. Metabolism of nucleic acids: • Synthesis of ribonucleotides- a brief idea of <i>de novo</i> pathway and salvation pathway. • Conversion of ribonucleotides to deoxyribonucleotides. • Degradation of nucleotides Integration of Metabolism, Energy demand and supply; Integration of major metabolic pathways of energy metabolism; Intermediary metabolism; Organ specialization and metabolic integration. Metabolism in starvation •		transferase.	
Image: Constraint of the state of the sta	Unit – III	Metabolic pathways and Integration of metabolism	15
Protein Metabolism: • Metabolism of amino acids: Amino acid pool, transamination; • oxidative and non- oxidative deamination; • metabolism of branched chain amino acids; • fate of carbon skeleton of amino acids. Metabolism of ammonia: Urea cycle. Metabolism of ribonucleotides- a brief idea of <i>de novo</i> pathway and salvation pathway. • Conversion of ribonucleotides to deoxyribonucleotides. • Degradation of nucleotides Integration of Metabolism, Energy demand and supply; Integration of major metabolic pathways of energy metabolism; Intermediary metabolism; Organ specialization and metabolic integration. Metabolism in starvation			Lectures
 Metabolism of amino acids: Amino acid pool, transamination; oxidative and non- oxidative deamination; metabolism of branched chain amino acids; fate of carbon skeleton of amino acids. Metabolism of ammonia: Urea cycle. Metabolism of nucleic acids: Synthesis of ribonucleotides- a brief idea of <i>de novo</i> pathway and salvation pathway. Conversion of ribonucleotides to deoxyribonucleotides. Degradation of Metabolism, Energy demand and supply; Integration of major metabolic pathways of energy metabolism; Intermediary metabolism; Organ specialization and metabolic integration. 		Protein Metabolism:	
transamination; transamination; oxidative and non- oxidative deamination; metabolism of branched chain amino acids; fate of carbon skeleton of amino acids. Metabolism of ammonia: Urea cycle. Metabolism of nucleic acids: Synthesis of ribonucleotides- a brief idea of <i>de novo</i> pathway and salvation pathway. Conversion of ribonucleotides to deoxyribonucleotides. Degradation of nucleotides Integration of Metabolism, Energy demand and supply; Integration of major metabolic pathways of energy metabolism; Intermediary metabolism; Organ specialization and metabolic integration. Metabolism in starvation		• Metabolism of amino acids: Amino acid pool,	
 oxidative and non- oxidative deamination; metabolism of branched chain amino acids; fate of carbon skeleton of amino acids. Metabolism of ammonia: Urea cycle. Metabolism of nucleic acids: Synthesis of ribonucleotides- a brief idea of <i>de novo</i> pathway and salvation pathway. Conversion of ribonucleotides to deoxyribonucleotides. Degradation of nucleotides Integration of Metabolism, Energy demand and supply; Integration of major metabolic pathways of energy metabolism; Intermediary metabolism; Organ specialization and metabolic integration. 		transamination;	
 metabolism of branched chain amino acids; fate of carbon skeleton of amino acids. Metabolism of ammonia: Urea cycle. Metabolism of nucleic acids: Synthesis of ribonucleotides- a brief idea of <i>de novo</i> pathway and salvation pathway. Conversion of ribonucleotides to deoxyribonucleotides. Degradation of nucleotides Integration of Metabolism, Energy demand and supply; Integration of major metabolic pathways of energy metabolism; Intermediary metabolism; Organ specialization and metabolic integration. 		• oxidative and non- oxidative deamination;	
 fate of carbon skeleton of amino acids. Metabolism of ammonia: Urea cycle. Metabolism of nucleic acids: Synthesis of ribonucleotides- a brief idea of <i>de novo</i> pathway and salvation pathway. Conversion of ribonucleotides to deoxyribonucleotides. Degradation of nucleotides Integration of Metabolism, Energy demand and supply; Integration of major metabolic pathways of energy metabolism; Intermediary metabolism; Organ specialization and metabolic integration. 		• metabolism of branched chain amino acids;	
Metabolism of ammonia: Urea cycle. Metabolism of nucleic acids: • Synthesis of ribonucleotides- a brief idea of de novo pathway and salvation pathway. • Conversion of ribonucleotides to deoxyribonucleotides. • Degradation of nucleotides Integration of Metabolism, Energy demand and supply; Integration of major metabolic pathways of energy metabolism; Intermediary metabolism; Organ specialization and metabolic integration. Metabolism in starvation		• fate of carbon skeleton of amino acids.	
Urea cycle. Metabolism of nucleic acids: • Synthesis of ribonucleotides- a brief idea of de novo pathway and salvation pathway. • Conversion of ribonucleotides to deoxyribonucleotides. • Degradation of nucleotides Integration of Metabolism, Energy demand and supply; Integration of major metabolic pathways of energy metabolism; Intermediary metabolism; Organ specialization and metabolic integration. Metabolism in starvation		Metabolism of ammonia:	
Metabolism of nucleic acids: • Synthesis of ribonucleotides- a brief idea of <i>de novo</i> pathway and salvation pathway. • Conversion of ribonucleotides to deoxyribonucleotides. • Degradation of nucleotides Integration of Metabolism, Energy demand and supply; Integration of major metabolic pathways of energy metabolism; Intermediary metabolism; Organ specialization and metabolic integration. Metabolism in starvation		Urea cycle.	
 Synthesis of ribonucleotides- a brief idea of <i>de novo</i> pathway and salvation pathway. Conversion of ribonucleotides to deoxyribonucleotides. Degradation of nucleotides Integration of Metabolism, Energy demand and supply; Integration of major metabolic pathways of energy metabolism; Intermediary metabolism; Organ specialization and metabolic integration. 	* (Metabolism of nucleic acids:	
pathway and salvation pathway.• Conversion of ribonucleotides to deoxyribonucleotides.• Degradation of nucleotidesIntegration of Metabolism, Energy demand and supply;Integration of major metabolic pathways of energy metabolism;Intermediary metabolism;Organ specialization and metabolic integration.Metabolism in starvation		• Synthesis of ribonucleotides- a brief idea of <i>de novo</i>	
 Conversion of ribonucleotides to deoxyribonucleotides. Degradation of nucleotides Integration of Metabolism, Energy demand and supply; Integration of major metabolic pathways of energy metabolism; Intermediary metabolism; Organ specialization and metabolic integration. Metabolism in starvation 		pathway and salvation pathway.	
Degradation of nucleotides Integration of Metabolism, Energy demand and supply; Integration of major metabolic pathways of energy metabolism; Intermediary metabolism; Organ specialization and metabolic integration. Metabolism in starvation		• Conversion of ribonucleotides to deoxyribonucleotides.	
Integration of Metabolism, Energy demand and supply; Integration of major metabolic pathways of energy metabolism; Intermediary metabolism; Organ specialization and metabolic integration. Metabolism in starvation		Degradation of nucleotides	
Integration of major metabolic pathways of energy metabolism; Intermediary metabolism; Organ specialization and metabolic integration. Metabolism in starvation		Integration of Metabolism, Energy demand and supply;	
Intermediary metabolism; Organ specialization and metabolic integration. Metabolism in starvation		Integration of major metabolic pathways of energy metabolism;	
Organ specialization and metabolic integration. Metabolism in starvation		Intermediary metabolism;	
Metabolism in starvation		Organ specialization and metabolic integration.	
		Metabolism in starvation	

Init_IV	Regulation of metabolism and inhorn arrors of metabolism	15
Unit –i v	Regulation of metabolism and moorn errors of metabolism	15 Lectures
	Carbohvdrate metabolism:	Lectures
	 Glycogen storage disease, 	
	• G-6-PD deficiency	A O
	Lipid metabolism:	
	Metabolic disorders of cerebrosides.	
	Protein metabolism:	N
	• PKU	
	Albinism,	
	Cysteinurea	
	Purine metabolism: Primary Gout	
	Mineral metabolism and diseases:	
	• Hypocalcimia,	
	• Hypercalcimia	
	Osteoporosis	
	Teratology	
	• Teratogens and their effects	
	Sensitive period of teratogen	
	Specificity of teratogen	
	Thalidomide syndrome	
	Teratocarcinoma and Teratoma	
	Environmental teratogens	
	Evaluation of teratogenicity of chemicals	
	PRACTICAL	Credits
RPSZOOP202	Biochemistry and Metabolism- II	2
1.	Determination of total cholesterol and HDL cholesterol from	
	serum.	_
2.	Colorimetric estimation of protein by Peterson-Lowry method	_
3.	Detection of conformation of BSA by viscosity measurement	
	and effect of varying concentration of urea on viscosity of BSA	_
4.	Determination of creatinine in serum.	_
5.	Determination of urea in serum.	
6.	SDH specific activity	
7.	Enzyme kinetics - pH variation & Temperature-fungal amylase.	
8.	SDS PAGE of milk protein or blood plasma.	
9.	Isolation of polysaccharides from egg shell.	
REFERENCES:

- 1. U. Satyanarayan : Biochemistry- 2nd Ed. 2002, Books and Allied Publ.
- 2. S.C. Rastogi : Biochemistry- 2nd Ed., Tata McGraw Hill.
- 3. J.I.Jain, S. Chand and Co. Publ : Fundamentals of Biochemistry- 3rd Ed. 1988.
- 4. Lehninger, A. L., Nelson, D. L. and Cox, M. M., 2nd Edn.: Principles of Biochemistry, CBS Publishers and Distributors, New Delhi.
- Conn, E. E., Stumpt, P. K., Bruencing, G. and Dol, R. G. (1995): Outlines of Biochemistry. John Wiley, Singapore.
- 6. Murray, RK.Garner, D.K., Mayes P.A. and Rodwell, V.W. (2003): Harper's Illustrated Biochemistry, 26th Edn. Lange Medical Books, McGraw Hill, New York.

7. <u>www.enzymesIndia.com</u>

Course Code: RPSZOO203

Course Title: Molecular Biology and Genetics-II

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION		
OUTCOME	Upon successful completion of this course, learners will be able to;		
CO 1	Understand and comprehend the concepts of DNA replication, DNA repair		
	and protein synthesis.		
CO 2	Correlate the concept of genetic disorders and chromosomal variations.		
CO 3	Understand and analyse the concepts of allelic frequencies, natural selection and heterosis.		
CO 4	Apply the principle of genetics to calculate gene frequencies and allelic		
	frequencies.		

RPSZOO203	Paper-III	Credits
	Molecular Biology and Genetics–II	4
Unit –I	Molecular Biology- I	15
		Lectures
	DNA replication, repair and recombination	
	• Unit of replication,	
	• enzymes involved,	
	• replication origin and replication fork,	
	• fidelity of replication,	
	• extra chromosomal replicons,	
	• DNA damage and repair mechanisms,	
	homologous and site-specific recombination	
	Protein synthesis and processing	
Ribosome		
	formation of initiation complex	
	• initiation factors and their regulation	
Unit –II	Molecular Biology- II	15
		Lectures

R	
RUIA COLL	EGE
Explore • Experience	e • Excel

	RNA synthesis and processing	
	• transcription factors and machinery,	
	• formation of initiation complex,	
	• transcription activator and repressor,	
	• RNA polymerases,	
	• capping, elongation, and termination,	
	RNA processing,	
	• RNA editing, splicing, and polyadenylation,	
	• structure and function of different types of RNA, RNA	N'
	transport	
	Protein synthesis and processing	-
	elongation and elongation factors	
	• termination	
	• genetic code	
	Post translational modifications	
Unit –III	Genetic basis of syndromes and disorders	15
		Lectures
	Monogenic diseases	
	Autosomal dominant -Huntington diaease	
	Autosomal recessive -Cystic fibrosis	
	• Genetic disorders of Haemopoietic systems (Sickle cell	
	• X linked disorders	
	 Genetic disorders of eve colour blindness 	
	 Muscle genetic disorders (Duchenne Muscular Dystrophy 	
	Musche genetie disorders (Duenenne Museulai Dystrophy, Myasthenia gravis)	
	• Genome imprinting syndromes (Prader-Willi & Angelman	
	syndromes	
	Chromosomal disorders -aneuploidy, structural variations	
	Mitochondrial disorders	
	• Multifactorial disorders – diabetes (detailed study), Obesity	
	Polygeneic congenital heart diseases	
	Cognitive disabilities (Schizophrenia)	
0	Neurogenetic disorders (Parkinson disease	
	Genetics of reproduction	
Unit –IV	Evolution-II	15
		Lectures
	Additive gene action and continuous variation	

	R
	RUIA COLLEGE
)	Explore • Experience • Excel

	Heterosis and inbreeding depression: measuring inbreeding,	
	the effects of inbreeding	
	Processes that change allelic frequencies:	
	mutation, migration, natural selection, directional selection,	
	stabilizing and disruptive selection, heterozygote advantage,	
	balance between selection and mutation; genetic drift- random	
	genetic drift.	
	Environmental variation: causes of environmental variation;	
	genotype by environmental interaction	\mathbf{O}^{\prime}
	Broad sense heritability:	
	a) Effect of dominance, epistasis and environmental variations	
	on selection;	
	b) Quantitative trait loci and DNA markers;	
	c) Realized heritability	
	Limits on natural selection	
	Concepts of evolutionary ecology	
	PRACTICAL	Credits
RPSZOOP203	Molecular Biology and Genetics–II	2
1.	Quantitative estimation of DNA in a suitable tissue- comparative	
	study- by diphenyl amine method.	
2.	Quantitative estimation of RNA in a suitable tissue-comparative	
	study by orcinol method.	
3.	Extraction of Genomic DNA from Drosophila.	
4.	Temporary preparation of buccal smear to study sex chromatin	
	in human.	
5.	Squash preparation from mutagen treated onion root tips for	
	study of aberrations	
6		1
0.	Pedigree analysis	
7.	Pedigree analysis Analysis of proteins by two dimensional gel electrophoresis.	

<u>REFERENCES</u>:

- 1. Robert H. Tamarin: Prin. Of Genetics; 7th Ed. Tata McGraw Hill
- Elaine Johansen Mange and Arthur Mange : Basic Human Genetics; Indian Reprint; 1997; Rastogi Publ.
- 3. A.P. Jha : Genes and Evolution; MacMillon India
- 4. William S. Kluge: Concepts of Genetics; M.R.Cummings, Pearson Edu
- 5. F Scott. Gilbert, Sinauer Associates Inc : Developmental Biology.

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR M.Sc. ZOOLOGY (2020-2021) Explore a Experience

- 6. T. Subramanian : Developmental Biology; Narosa Publ.
- 7. Philip Grant : Biology of Developing System; Holt Saunders International Ed.
- 8. M. W. Strikberger: Evolution; CBS Publ.
- 9. Sumitra Sen and Dipak Kumar Kar : Cytology and Genetics; Narosa Publ.
- 10. R.M. Twyman, Bios : Instant Notes- Developmental Biology; Scientific Pub. Ltd.
- 11. Epstein, R. J. (2003): Human Molecular Biology. Cambridge Univ. Press, Cambridge
- Watson, J. D., T. A. Baker S. P. Bell, A Cann, M. Levine and R. Losick, (2004). Molecular Biology of Gene V Edition, Pearson Education RH Ltd. India.
- 13. Alberts, B, Johnson, J Lewis, M. Raff, K Roberts and P. Watter. (2014): Molecular Biology of the cell. 6th edition. Garland Science, New York.
- Lodish, H., A. Berk, C.A Kaiser, M.P. Scott, A Bretscher, H. Ploegh, P. Matsudaira. (2016):
 8th Edition, Molecular Cell Biology. W. H. Freeman and Co., N. Y.
- 15. Brachet, J. (1985) Molecular Cytology, Academic Press, N. Y.
- 16. Pollard, T. D. and W. C. Earnshaw.(2002): Cell Biology. Saunders
- 17. Daniel J. Fairbanks and W.R. Anderson : Genetics; Wadsworth Publ.
- Elaine Johansen Mange and Arthur Mange : Basic Human Genetics; Indian Reprint; 1997; Rastogi Publ.
- 19. A.P. Jha : Genes and Evolution; MacMillon India.

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR M.Sc. ZOOLOGY (2020-2021)

Course Code: RPSZOO204

Course Title: Applied Biology- II

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Understand and comprehend the principle, working and applications of
	chromatography and electrophoresis techniques.
CO 2	Recognise the resources for accessing research papers, and develop the skill of writing review articles.
CO 3	Evaluate and understand broad concepts of bioinformatics.
CO 4	Demonstrate efficacy studies in the experimental techniques for any biological project.
CO 5	Understand the ethical aspects of research.

RPSZOO204	Paper-IV	Credits
	Applied Zoology-II	4
Unit –I	Instrumentation-Principles and application of	15
	chromatography - II	Lectures
	Planar chromatography (Paper and Thin layer): Preparation	
	of stationary support, solvent, detection and measurement of	
	components, applications.	
	Column chromatography: Packing and operation of column,	
	loading the column, eluting the column, collection of elluent,	
	detection of elluent, application.	
	Ion exchange chromatography: Ion exchange resins,	
	selection of ion-exchanger, choice of buffers, preparation and	
	use of ion-exchangers, storage of resins.	
	Gel chromatography: Theory of gel filtration; physical	
	characteristics of gel chromatography, chemical properties of	
	gel, selection of gel, gel preparation and storage, operation of	

	Specialized databases: EST, GSS, KEGG, OMIM	
	Conserved regions in nucleotide and protein sequences	
Gene finding and motif finding		
	System biology and Bioinformatics, Biological pathway	
	analysis	
	• System biology database and tools: Reactome, Pathway commons	18
	Bioinformatics and functional genomics and proteomics	
	Introduction to Protein and DNA microarray	
	Data analysis in Microarray using bioinformatics	
	GEO database: functional genomics data repository	
	Bioinformatics and structural proteomics	
	Visualization and comparison of protein structure	
	Prediction of Secondary and tertiary structure of protein	
	PRACTICAL	Credits
RPSZOOP204	Applied Zoology-II	2
1.	Identification of lipids in a given sample by TLC.	
2.	Separation of pigments from leaves or flowers by adsorption	
	column chromatography.	
3.	Separation and identification of amino acids by 2D paper	
	chromatography	
4.	Study of genetic diseases using OMIM database	
5.	Tools for gene and motif finding	
6.	Visualization of biological pathway- KEGG Pathway, Plant	
	Reactome.	
7.	BLAST and its variants: Phi and Psi blast	
8.	Visualization of protein structure – Rasmol and PyMol	
9.	Protein structure prediction: Homology modelling based	
	structure prediction tool-SWISS model	
10.	Submission of Poster and presenting/ Attending the	
	Local/State/ National/International Seminars/workshops/	
	Conferences.	

REFERENCES:-

1. Modern Experimental Biochemistry; 3rd Ed. Rodney Boyer, Pearson Education.

- Principles and Techniques of Practical Biochemistry. Wilson and Walker, Cambridge Univ. Press.
- 3. Biological Science; 3rd Ed. D.J.Taylor, N.P.O.Green, G.W.Stou, Cambridge Univ. Press
- 4. Cell and Molecular Biology- Concepts and Experiments, Gerald Karp. John Wiley & Co.
- 5. Introductory Practical Biochemistry; S.K.Swahney, Randhir Sing. Narosa Publ.
- 6. An Introduction to Practical Biochemistry; 3rd Ed. David Plummer. Tata McGraw Hill
- 7. Practical Research Planning and Design; 2nd Ed. Paul D. Leedy. Macmillan Publ.
- Elementary Practical Organic Chemistry Part I: Small Scale Preparations. 2nd Ed. Arthur I. Vogel. CBS Publ. and Distributors.
- Research Methodology. Methods and Techniques; C.R.Kothari. Wiley Eastern Ltd. Mumbai.
- Bioinformatics: concepts skills and applications (2004).S.C. Rastogi, N. Mendiratta and P. Rastogi.
- 11. Bioinformatics: A modern approach .(2005) V.R. Srinivas.
- 12. Essential Bioinformatics (2006). J. Xiong.

- 13. Statistical methods in Bioinformatics: An introduction. (2005). W. Even and G. Grant
- Bioinformatics: A Practical Approach 2007 Shui Qing (Chapman & Hall/CRC Mathematical and Computational Biology)

Modality of Assessment

Theory Examination Pattern:

B) Internal Assessment- 40%- 40 Marks

Sr. No.	Evaluation type	Marks
1.	Two Assignments/Case study/Project/Research paper review	20
2.	One class Test (multiple choice objective question)	20

B) External Examination- 60%- 60 Marks

Semester End Theory Examination:

- 1. Duration These examinations shall be of **2hours 30 mins** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Questions	Options	Marks	Questions on
Q.1	Any 1 out of 2	12	Unit- I
Q.2	Any 1 out of 2	12	Unit- II
Q.3	Any 1 out of 2	12	Unit- III
Q.4	Any 1 out of 2	12	Unit- IV
Q.5	3 short notes out of 5	12	All Units

Practical Examination Pattern:

D) External Examination: 50 Marks

Particulars	Marks
Journal	05
Experimental tasks/ Viva	45
Total	50

• Overall Examination & Marks Distribution Pattern Semester-II

Course	RPSZOO20		RPSZOO20		RPSZOO203		RPSZOO204		Grand
	1		2						Total
	Internal	Externa	Internal	Externa	Interna	Externa	Internal	Extern	
6		1		1	1	1		al	
Theory	40	60	40	60	40	60	40	60	400
Practical	50		50		50		50		200

Resolution No.: AC/I(19-20).2.RPS11

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for: Semester III & IV

Program: M.Sc

Program Code: Zoology (RPSZOO)

Specialization- Animal Physiology

(Credit Based Semester and Grading System for the academic year 2020–2021)

COLLEGE RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR M.Sc. ZOOLOGY (2020-2021)

ANIMAL PHYSIOLOGY

Course	TT	TITUT D	Cuc dit-
DDS700301	Unit	IIILE Design of Industrial and Environmental Distochnology	
KF5Z00501		- I	4
	Ι	The implications of recombinant DNA technology	
		of commercial products and microbial synthesis	Ŋ.
	II	Large scale culture & production from	
		recombinantmicroorganisms&genetically	
		engineered animal cells	
	III	Medical Biotechnology	
	IV	Environmental Biotechnology I	
RPSZOO302		Genetic Engineering Techniques and Its Applications	4
	l	Genome management and analysis	
	11	Manipulation of gene expression in prokaryotes	
	III	Bioinformatics	
	IV	Animal biotechnology and Human therapies	
RPSZOP303		Comprehensive Physiology-I	4
	Ι	Level of response and Nutritional	
		Physiology	
	II	Dynamics of physiological fluids	
	III	Physiological of mobility & Continuity of Life	
	IV	Neuroendocrine regulation, sensory & effecter	
		physiology	
PSZOP304		Environmental and Applied physiology-I	4
	Ι	Stress, Water and pressure as environmental	
		Factors	
•	II	Oxygen and Temperature as environmental	
		Factors	
	III	Environmental Radiation, physiology of Biological	
		Timing	
	IV	Physiological Tools for clinical diagnostics	
		Practical	
RPSZOOP301		Basics of Industrial and Environmental Biotechnology – I	2
RPSZOOP302		Genetic Engineering Techniques and Its Applications	2
RPSZOPP303		Comprehensive Physiology-I	2
RPSZOPP304		Project	2
Grand Total			24

Course Code: RPSZOO301

Course Title: Basics of Industrial and Environmental Biotechnology -I

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Understand and analyse the concepts of recombinant DNA technology,
	GMOs, antibiotic resistant genes.
CO 2	Evaluate and comprehend the methods of Large-scale culture production and
	maintenance.
CO 3	Compare and contrast between different methods of fermentation and their
	benefits.
CO 4	Identify and differentiate between different types of vaccines and their
	applications.

RPSZOO301	Basics Of Industrial & Environmental Biotechnology -I				
		4			
Unit-I	The implications of recombinant DNA technology of				
•	commercial products and microbial synthesis				
	The implications of recombinant DNA technology				
	• General account on applications of biotechnology				
	Commercialization of biotechnology & biotech companies				
	Prospects of novel food technology				
	Economics of microbial biotechnology				
	• Areas of significant public concern: Antibiotic resistance				
0	marker gene, transferof allergies, pollen transfer from GM				
	plants, social, moral & ethical issuesassociated with GMOs.				
	Amino acids & their commercial use – production strain, process				
	of L-glutamate, L-aspartate, L-phenylalanine, L-tryptophan.				

Unit -IV	Environmental Biotechnology I	15 Lectures
	Biomass utilization	
	 Microorganisms in lignocellulose degradation Isolation of probamatic & subamatic collulate cone 	
	 Isolation of prokaryouc & eukaryouc cellulase gene Manipulation of cellulase gene 	~ 0
	• Production of single cell proteins by using biomass as raw material.	
	• Commercial production of fructose and alcohol from biomass	O
	Improvements of fructose and alcohol production	
	• Fuel ethanol from biomass.	
	Biogas utilization	
	Characteristics of venohiotics in the environment	
	 Characteristics of xenoblotics in the environment Characteristics of aerobic microorganisms for degradation of organic pollutants 	
	Genetic engineering of biodegradative pathways-	
	 Manipulation by transfer of plasmid, manipulation by gene alteration 	
	 Degradation of xenobiotic compounds-petroleum products, n- alkanes, alkenes, cycloaliphatic compounds, aromatic hydrocarbons, polyaromatic hydrocarbons, chlorinated organic compounds (aliphatic & aromatic) 	
	PRACTICAL	Credits
RPSZOOP301	Basics of Industrial & Environmental Biotechnology I	2
1.	Demonstration of aseptic technique: Work place for aseptic	
	handling, packing glassware (flasks, test tubes, pipettes, petri dish)	
	test tube)	
2.	Preparation of LB agar plate, slant, butt & demonstration of	
- CiO	streaking technique using bacterial culture to obtain isolated colonies	
3.	Isolation of bacterial culture on differential media (Mac Conkeys agar).	
4.	To estimate the number of bacteria in the given culture by	

<u>REFERENCES</u>:

- 1. Johan E. Smith, Biotechnology, 3rd Edition, Cambridge Univ. Press
- Colin Rateledge and Bjorn Kristiansen, Basic Biotechnology, 2nd Edition, Cambridge Univ. Press
- 3. Susan R. Barnum, Biotechnology An Introduction, Vikas Publishing House
- 4. Bernard R. Glick and Jack J. Pasternack, Molecular Biotechnology Principles and applications of recombinant DNA, ASM Press, Washington DC.
- 5. Alexander N. Glazer and Hiroshi Nikaido, Microbial Biotechnology Fundamentals of applied microbiology, W. H. Freeman and Co, New York
- InduShekar Thakur, Environmental Biotechnology Basic concepts and applications, I. K. International Pvt. Ltd, Mumbai, New Delhi
- John A. Thomas (Ed.), Biotechnology and safety assessments, 2nd Edition, Taylor and Francis
- S. S. Purohit, Biotechnology Fundamentals and applications, 3rd Edition, Agrobios, India
- Patent Facility Centre (PTC) Technology information, Forecasting and Assessment Council (TIFAC), Department of Science and Technology, New Delhi

Course Code: RPSZOO302

Course Title: Genetic Engineering Techniques and Its Applications

Academic year 2020-21

COURSE OUTC	OMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Understand the basic concepts of Genetic engineering, vectors, genomics,
	and proteomics.
CO 2	Compare and contrast between different types of cloning vectors,
	electrophoresis techniques and their applications.
CO 3	Evaluate and comprehend concepts of gene expression in prokaryotes and
	bioinformatics.
CO 4	Develop skills and demonstrate different techniques of aseptic transfer.
CO 5	Isolate and identify different bacterial colonies.

RPSZOO302	Genetic Engineering Techniques And Its Applications	Credits
		4
Unit-I	Genome management and analysis	15
		Lectures
	The Basic tools of genetic engineering	
	Chemical Synthesis of DNA-Oligonucleotide synthesis by	
	Phosphoramidite method, Synthesis of genes	
	• DNA Sequencing Maxam-Gilbert method, Sanger's	
	• dideoxynucleotide method, By using bacteriophage M13, By	
	Primer walking, Next generation sequencing .	
	• PCR and its types (RT-PCR, nested and multiplex)	
	Cloning Vectors	
	• General purpose plasmid vectors (pUC19, pBR322) (Bacterial	
	Vectors)	
	Bacteriophage and cosmid vectors	
	Yeast artificial chromosomes (YACs)	
	Analysis of genome/proteome	
	DNA fingerprinting/physical mapping/pulsed field gel	

OLLEGE

	electrophoresis	
	• Analysis of the proteome– 2D PAGE & Mass spectroscopy.	
	• Analysis of mRNA transcripts– DNA Microarray.	
Unit -II	Manipulation of gang avaragsion in prokarvotes	15
Omt -H	manipulation of gene expression in prokaryotes	Lectures
	Promoters of gene expression in prokarvotes	
	 Prokarvotic gene expression 	
	Isolation of functional promoters	C Y
	 Promoter selection with E coli plasmid pBR316 	
	 Promoter selection with plasmid pKO1 	
	Gene expression from strong and regulatable promoters	
	Expression of cloned genes in prokarvotes	_
	 Increasing protein production and secretion 	
	Inclusion bodies and fusion proteins	
	Unidirectional tandem gene arrays	
	Translation expression vectors	
	• Increasing protein stability	
	XO	
Unit -III	Bioinformatics	15
		Lectures
	Uses and application of computers in biological sciences	
	DNA profiling: cDNA and EST's (expressed sequence tags)	
	Basic research with DNA microarrays and its application in	
	healthcare.	
	Biomedical genome research and pharmaco genomics	
	Random amplified polymorphic DNA (RAPD)	
	Human genomic variation-SNP's (single nucleotide	
	polymorphisms, SNP's and disease; Q1L (quantitative trait loci)	
	and its relation to SNP's Satallite DNA and its types	
Unit -IV	Animal biotechnology and Human therapies	15
Unit -1 V	Anima biotechnology and Human therapies	Lectures
	Animal Biotechnology	Lectures
	• Transgenic animals and their applications: Mice as model	
	system for human diseases and as test case model. Cows pigs	
	sheep, goats as biopharmaceuticals. Transgenic insects and	
	birds.	
	Recombinant DNA technology to prevent animal diseases	
	 Conservation biology-Embryo transfer 	
		1

			-
	• Regulation of transgenic animals and patenting genetically engineered animals		
	 Knockout mice (Cre. lovP system) 		
	• Knockout hilee (Cre- loxr system)		
	Human therapies		
	• Tissue engineering: Skin, liver, pancreas	$\sim C$	
	Xenotransplantation	\sim	
	Antibody engineering		
	• Cell adhesion based therapies: Integrins, Inflammation, Cancer		
	and metastasis		
	• Targeted gene replacement for correcting a mutated gene		
	Site directed mutagenesis		
RPSZOOP302	PRACTICAL	Credits	1
	Genetic Engineering Techniques And Its Applications	2	
1.	Determination of Air microflora		1
2.	Determinations of viable cell counts in the given culture of		
	bacteria by dilution, spreading and pour plate technique.		
3.	Using mini-prep method isolate plasmid DNA from the given		
	strain of bacteria & show the purity of the isolate by performing		
	agarose gel electrophoresis		
DEEDDENCES			

<u>REFERENCES</u>:

- R. S. Crespi; Patents a basic guide to patenting biotechnology, Cambridge Univ. Press
- R. E. Speir, J. B. Griffiths, W. Berthold (Ed), Animal Cell Technology Products of today, prospects of tomorrow, Butterworth –Heinman Publishers
- 3. Martin Fransman, GerdJunne, AnnemiekeRoobeek (Ed), The Biotechnology revolution?, Blackwell Scientific Publishers
- 4. Terence Cartwright, Animal Cells as Bioreactors, Cambridge Univ. Press
- 5. A. Rosevear, John F. Kennedy, Joaquim M. S. Cabral, Immobilized enzymes and cells, Adam Hilger Publishers, Bristol and Philadelphia
- 6. Micheal P. Tombs and Stepan E. Harding, An Introduction to polysaccharide biotechnology
- 7. T. A. Brown, Gene Cloning An Introduction, 3rd Edition, Nelson Thornes
- Bob Old and S. B. Primrose, Principles of Gene Manipulation, 5th Edition, Wiley Blackwell Publishers
- 9. U. Satyanarayan, Biotechnology, 2007 Reprint, Uppala Author Publisher Interlink

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR M.Sc. ZOOLOGY (2020-2021) Experience of Experience of

SPECIALIZATION- ANIMAL PHYSIOLOGY

Course Code:RPSZOP303

Course Title: Comprehensive Physiology-I

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION				
OUTCOME	Upon successful completion of this course, learners will be able to;				
CO 1	Understand and comprehend the concepts of nutritional physiology, its regulations and neural physiology.				
CO 2	Compare and contrast between the different transport systems across the cell membranes.				
CO 3	Differentiate and analyse the different physiologies of heart and circulatory systems amongst invertebrates and vertebrates.				
CO 4	Understand and analyse the physiology of motility, biochemistry of contractile proteins, and physiology of skeletal muscle fibre.				

RPSZOP303	Comprehensive Physiology-I	Credits		
		4		
Unit-I	Unit-I Levels of response and Nutritional Physiology			
		Lectures		
	Levels of Physiological response- Molecular, Membrane, Organ			
	and Organism. A brief idea of physiological response at			
	molecularlevel			
	Membranephysiology-			
	Functionalconsequencesofmolecularcompositionand			
	arrangement.			
	Transport across cell membrane-Diffusion, active transport,			
	pump; uniports, symports and antiport, co-transport by			
	symporters and anitporters.			
	Physiology of Food Capture and Processing			
	Nutritive Patterns: Origin of nutritive types.			
	Feeding patterns:			

	a)Large particle feeding	
	b)Surface nutrient absorption	
	Digestion:	
	a)Bulk movement and peristalsis	
	b)Comparative biochemistry of digestion	6
	c) Neural and hormonal regulation of secretion of digestive	
	enzymes.	
	Regulation of nutritional intake:	
	a)Hunger drive, Glucostatic and Hepatostatic theories of hunger	$\mathbf{O}^{\mathbf{Y}}$
	drive	
	b) Adaptation of gut to metabolic rate and diet.	
	c) Balanced diet: A human perspective	
Unit-II	Dynamics of physiological fluids-circulation	15
		Lectures
	Circulation of body fluids:	
	a) Circulating fluids-Cytoplasm, Hydrolymph, hemolymph,	
	lymph and Blood	
	b) Circulatory mechanisms and Fluid compartments, movement	
	of body fluids by somatic muscles. Hemolymph and open	
	systems	
	Pressure and flow in vertebrate circulatory system.	
	Physiological types of hearts with special reference to	
	arthropods, annelids, mollusca, tunicates and vertebrates.	
	Pacemakers and specialized conducting fibers.	
	Selective distribution of blood flow.	-
	Cardiac Physiology:	-
	Neuro hormonal regulation of cardiac amplitude and frequency.	
	Effects of exercise on cardiac vascular physiology - A human	
• (perspective	
Unit- III	Physiology of motility	15
	Y	Lectures
	Physiology of movement and locomotion:	
	Biochemistry of contractile proteins.	
	Physiology of non-muscular contractile elements: Axoplasmic	-
	movement, Chromosome involvement	
*	Physiology of skeletal muscle fibre:	1
	Actomyosin complex	
	Source of energy for muscle contraction	
	• Sliding filament theory	
	 Excitation of contraction and mechanism of regulation of 	
	- Exercition of contraction and meenanism of regulation of	

EGE e • Excel

contraction by calcium	
Mechanism of relaxation	
Comparative physiology of invertebrate muscle:	
Polyneural innervation in anthropod muscle	
Insect non-oscillatory postural muscle	
• Resonant flight and tymbal muscle in insects	
Catch muscle and delayed relaxation	
Unit-IV Neurotransmission Physiology	15
	Lectures
Physiology of neuronal system:	
Excitable membranes:	G
Membranes potential	
• Ions as current carriers - Protons, calcium, potassiur	n,
structure of cation-permeable channels and chloride	channels
Synaptic transmission:	
Electrical transmission	
Chemical transmitters- Neuropeptide, FMRF-amide	family,
Gastrin, CCK family, Hypothalamic pituitary factor	s
Integrative Neurophysiology:	
Neurons, Inter neurons, neural Circuits, Networks, Prim	nitive
Nervous Systems, Nerve nets, Central pattern Generator	rs in
Invertebrates, Chordate Nervous System, Central Nervo	ous
System processing	
Memory and Learning	
PRACTICAL	Credits
RPSZOPP303 Comprehensive Physiology-I	2
1. Determination of activities of digestive enzymes viz. An	mylase,
Pepsin, Trypsin, Lipase etc. in different animals (Cockr	oach).
2. Study of effect on activity of any enzyme of various fac	tors like
pH, Temperature, Activator, Inhibitor.	
3. Determination of Km of a given enzyme.	
4. Total RBC, WBC and Different WBC count- A compar	ative
study of fish, goat and human.	
5. Routine human blood tests like RBC, WBC, DWBC, H	b content,
blood sugar. Prepare a report as required by a pathologi	cal
laboratory (goat blood).	
6. Observation of decreasing PO2 of water on the respirato	ory rate of
a fish.	
7. Effect of decreasing PO2 of water on Lactic acid in the	1
	muscle.

 ,	
is transferred to a salt- free medium and to natural medium.	
Preparation of glycerinated muscle fibre and study of its	
properties.	
Effect of different concentrations of sodium chloride on the	

diameter of RBCs and determination of concentration isotonic to
blood.

REFERENCES:

9.

10.

1. A. G. Giese: "Zoology III Cell Physiology" (3rd Ed) Saunders, Toppan

2. Gerald Karp: "Cell Biology" McGraw Hill Kogakusha Ltd.

3. Darnell, Loddish, Baktimore: "Molecular Cell Biology" Scientific American Books.

4. C. A. Keil, E. Neil & E.N. Joeb (1982): "Samson Wright, Applied Physiology" Oxford Univ. Press.

5. R. Eckert & D. Randall (1982): "Animal Physiology: 2nd Ed." W. H. Freeman & Co.

6. W. A. Hoar (1982): "General & Comparative Animal Physiology 3rd Ed." Prentice Hall Inc.

7. C. L. Prosser (1973): "Comparative Animal Physiology" W. B. Saunders.

8. C. Ladd Prosser Ed. (1991): "Neural & Integrative Animal Physiology" "Comparative Animal Physiology", 4th Ed. Wileg – Liss Publ.

9. C. Ladd Prosser Ed. (1991): "Environmental & Metabolic Animal Physiology" "Comparative Animal Physiology" 4th Ed. Wileg – Liss Publ.

10. Withers, P.C. (1983): "Comparative Animal Physiology" International Ed. Saunders College Publishing.

11. K. Schmidt – Niel (1983): "Animal Physiology: Adaptation & Environmental" 3rd Ed. Cambridge Univ. Press.

12. R. W. Hill (1978): "Comparative Physiology of Animals – An Environmental Approach" Harper & Row Publ.

13. P. W. Hochachka & G. M. Somero (1973): "Strategies of Biochemical Adaptation".

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR M.Sc. ZOOLOGY (2020-2021)

Course Code: RPSZOP304

Course Title: Environmental and Applied Physiology -I

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION	
OUTCOME	Upon successful completion of this course, learners will be able to;	
CO 1	Understand and comprehend the concepts of water, oxygen and solar radiation as environmental factors affecting physiology of animals.	
CO 2	Compare and contrast between the different adaptations of invertebrates and vertebrates during oxygen deplete conditions and correlate it with their evolution.	
CO 3	Evaluate and analyse the effect of radiation at cellular and molecular levels in animals and understand the phenomenon of radioprotection.	
CO 4	Interpret the correlation of enzymes with different cancers.	
CO 5	Develop employable skills related to testing various parameters of blood.	

RPSZOP304	Environmental and Applied Physiology -I	
		4
Unit- I	Stress, Water as an environmental factor	15
		Lectures
	Environmental Stress, Homeostasis and strategies of	
* (biochemical adaptations:	
	Basic concept of environmental stress	
	Plastic and elastic strain	
	• Stress resistance, stress avoidance and stress tolerance	
	Homeostasis and biochemical adaptation:	
	• External and internal environment	
	Multiple control system	
	Strategies of biochemical adaptations	
	Water and Solute problem:	
	• Preservation of intracellular solvent capacity	
	• Strategies and degrees of ionic regulation	
	• ATPase the model regulatory enzyme	

	Key role of GDH reaction	
	Salt glands in animal kingdom	
Unit- II	Oxygen as environmental factor.	15
		Lectures
	Oxygen as an environmental factor:	
	Oxygen and Origin of life.	~ 0
	Oxygen dependencies in living organism.	\sim
	Anoxia adaptations in invertebrates.	
	Adaptations of vertebrates during prolonged diving.	N
	Oxygen debt in vertebrate muscle.	
Unit –III	Environmental Radiation.	15
		Lectures
	Radiation as an environmental parameter.	
	The solar spectrum.	
	Biomolecules involved in perception and trapping of solar	
	radiations: Chlorophyll, Bacterio-rhodospin, Rhodospin and	
	Vitamin A. Adaptations of animals to absence of solar	
	radiations.	
	Effects of Ionizing radiations at the cellular and molecular level.	
	Phenomenon of radioprotection.	
	Effects of Ionization radiations at cellular and molecular level.	
	Phenomenon of radioprotection.	
Unit –IV	Enzymes and Body Fluids as Clinical Diagnostic Tools.	15
		Lectures
	Enzymes as diagnostic tools :	
	Plasma specific and non-plasma specific enzymes	
	Diagnostic importance of LDH	
•	Enzyme in diagnosis of myocardial infarction	
	• Enzymes in Liver diseases and toxicity	
	Enzymes in muscle disease	
	Enzymes in cancer	
	Physiological fluids as diagnostic tools:	
	• Routine Blood tests, plasma composition- changes in	
	disease	
7	• Serum: Urea-N, Creatinine, Uric acid, proteins,	
	bicarbonates, Na+ K+ Cl-	
	Glucose tolerance test, glycosylated Haemoglobin	
	• Lymph and cerebro-spinal-fluid: Changes in composition in	
	disease	

	• Urine composition/ constituents as a diagnostic tool-Routine Urine tests, Urea-N, Creatinine, Uric acid, tests for proteinurea, albuminurea, Glucosurea, chyluria (for filariasis)		
RPSZOPP304	PROJECT	Credits	D
		2	
• Each student will choose a different topic related to the syllabus.			
• Students will submit their Project proposal having Introduction, Review of Literature,			
Materials and Methods, Expected outcomes and References.			

REFERENCES:

- 1. J. G. Philips (1975): "Environmental Physiology" Blackwell Scientific Publ.
- J. R. Bernstein (1972): "Biochemical Responses to Environmental Stress" Academic Press
- 3. Harold Harper: "Review of Physiology Chemistry" 4th Ed. Maruzen Asian Ed. Lang Medical Publ.
- 4. Richard Dawkins (1989): "Selfish Gene" Cambridge Univ. Press.
- 5. Leycock & Wise "Essential Endocrinology" 2nd Ed. ELBS. Oxford Univ. Press.
- 6. Introduction from Rac Silver & Karvey Feder: "Hormones & Reproduction Behaviour" Scientific Americal (Readings from) W. H. Freeman & Co.
- Marie A. Moisio & Elmer W. Moisio: "Understanding Laboratory & Diagnostic Tests" (1998) Delmar Publishers.
- 8. Sujit K. Chaudhuri: "Concise Medical Physiology" 2nd Ed. (1993) New Central Book, Agency (P) Ltd., Calcutta
- 9. Thomas G. M. Schalkhammer (Ed.) Indian Reprint 2004: "Analytical Biotechnology Methods & Tools in Biosciences and Medicine Rajkamal Electric Press, Delhi
- 10. Praful B. Godkar (1994) Textbook of Medical Laboratory Technology Bhalani Publishing House, Bombay
- Biswajit Mohanty & Sharbari Basu (2006): "Fundamentals of Practical Clinical Biochemistry" B. I. Publications (Pvt.) Ltd., New Delhi
- 12. G. P. Talwar & S. K. Gupta (Ed.) (1993): A Handbook of Practical and Clinical Immunology Vol. 2 Second Edition CBS Publishers & Distributors, New Delhi.

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr. No.	Evaluation type	Marks
1.	Two Assignments/Case study/Project/Research paper review	20
2.	One class Test (multiple choice objective question)	20

B) External Examination- 60%- 60 Marks

Semester End Theory Examination:

- 1. Duration These examinations shall be of **2hours 30 mins** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Questions	Options	Marks	Questions on
Q.1	Any 1 out of 2	12	Unit- I
Q.2	Any 1 out of 2	12	Unit- II
Q.3	Any 1 out of 2	12	Unit- III
Q.4	Any 1 out of 2	12	Unit- IV
Q.5	3 short notes out of 5	12	All Units

Practical Examination Pattern:

C) External Examination: 50 Marks

Particulars	Marks
Journal	05
Experimental tasks/ Viva	45
Total	50

D) Modality for Project

Topic / Title	02		
Literature survey	08		
Objectives and purpose	06		
Material and Method	08		
Work plan with timeline	10		
Expected outcome	08		
Viva voce based on proposal 08			
Total- 50 Marks			

Overall Examination & Marks Distribution Pattern Semester-III

Course	RPSZOO30)1	RPSZOO3	02	RPSZOP3	303	RPSZOP3	304	Grand Total
	Internal	External	Internal	External	Internal	External	Internal	External	
Theory	40	60	40	60	40	60	40	60	400
Practical's	5	0		50		50	5	50	200

the second

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR M.Sc. ZOOLOGY (2020-2021)

Course	Unit	Title	Credits
PPS700401	I	asics of Industrial & Environmental	
KI 5200401		Biotechnology-II	
	Ι	Microbial synthesis of commercial products	
	II	Large scale culture & production for industrial	
		biotechnology	4
	III	Agricultural Biotechnology	
	IV	Environmental Biotechnology II	
RPSZOO402	Geno	me Management, Manipulation, Regulations And Patents In Biotechnology	
	Ι	Genome management	
	II	Manipulation of gene expression in eukaryotes	
	III	The human ganome project	4
		Regulations and patents in biotechnology	-
	1 V	Comprehensive Physiology II	
KP5ZUP405	_	Comprehensive Physiology-II	
	Ι	Level of response and Nutritional Physiology	
	II	Dynamics of physiological fluids	
	III	Physiological of mobility & Continuity ofLife	4
	IV	Neuroendocrine regulation, sensory & effecter	-
RPSZOP404		Environmental and Applied physiology-II	
	Ι	Stress, Water and pressure as environmental factors	
	II	Oxygen and Temperature as environmental Factors	
•	III	Environmental Radiation, physiology of Biological Timing	
	IV	Physiological Tools for clinical diagnostics	_
		PRACTICAL	
RPSZOOP401		Basics Of Industrial & Environmental Biotechnology II	2
RPSZOOP402		Genome Management, Manipulation, Regulations And	2
RPSZOPP403		Comprehensive Physiology-II	2
		Project	2
Crond Total			2
Granu Total			24

SEMESTER-IV ANIMAL PHYSIOLOGY

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR M.Sc. ZOOLOGY (2020-2021)

SEMESTER-IV

Course Code: RPSZOO401

Course Title: Basics of Industrial & Environmental Biotechnology II

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Comprehend and understand the concepts of microbial synthesis of organic
	acids, polysaccharides, antibiotics, and their applications.
CO 2	Compare and contrast between different methods of immobilization.
CO 3	Evaluate and analyse the different techniques used in agricultural
	biotechnology.
CO 4	Compare and contrast between different types of bioreactors of bio-
	absorption and methods of bioleaching.
CO 5	Develop skills and demonstrate the technique of immobilization of cells

RPSZOO401	Basics Of Industrial & Environmental Biotechnology II	Credits
		4
Unit-I	Microbial synthesis of commercial products	15
•		Lectures
	Microbial synthesis of commercial products	
	• Organic acids & their commercial applications – Citric acid,	
	gluconic acid, lactic acid, Acetic acid.	
	• Antibiotics – Cloning antibiotic biosynthetic gene by	
	complementation & otherAminoglycosides & their uses	
	Polysaccharides: Bacterial polysaccharides: General properties &	
0	their commercial applications-	
	• Dextran, Xanthan, Alginate.	
	• Genetic engineering for the large scale production of Xanthan	
	gum & it's modification	
	• Marine polysaccharides: General properties & their	

	commercial application-Agar &agarose, Chitosan	
	• Polyesters: Polyhydroxyalkanoates (PHA)-Biosynthesis of	
	PHA, Biopol-commercial biodegradable plastic	
Unit-II	Large scale culture & production for industrial biotechnology	15
		Lectures
	Biotransformations	
	• Selection of biocatalyst-screening & use of novel existing	
	biocatalyst	
	Genetic modification of existing biocatalyst (Indigo	
	biosynthesis)	5
	Biocatalyst immobilization-	
	Methods of immobilization- Cross linking, supported	
	immobilization, adsorption & ionic binding, covalent coupling,	
	lattice entrapment	
	• Immobilized soluble enzymes & suspended cells	
	• Immobilization of multi-enzyme systems & cells	
	• Immobilized enzyme reactors- Batch reactors, continuous	
	reactors	
	Analytical enzymes-	
	• Enzymes in diagnostic assays: Test strip systems & Biosensor	
	Electrochemical & optical type.	
	× *	
Unit -III	Agricultural Biotechnology	15
		Lectures
	Agricultural Biotechnology:	
	Nitrogen fixation	
	Nitogenase-Component of nitrogenase; Genetic engineering	
	of nitrogenasecluster	
	Hydrogenase-Hydrogen metabolism	
	Genetic engineering of hydrogenase gene	
	Nodulation-Competition among nodulation organisms,	
	genetic engineering of nodulation gene	
	• Microbial insecticides-Toxins of Bacillus thuringiensis, mode	
	of action & use of thuringiensis toxins, thuringiensis toxin	
	gene isolation, genetic engineering of Bacillus	
	gene isonation, genere engineering of 2 actions	

	• Developing insect resistant, virus resistant & herbicide	
	resistant plant	
	• Algal products: Fuels from algae, marine natural products &	
	their medical potential-anticancer, antiviral compounds, anti	
	bacterial agents.	
Unit-IV	Environmental Biotechnology II	15
		Lectures
	Bioabsorption of metals (Recovery from effluents)	
	Bioabsorption by fungi, algae, moss & bacteria	V
	Mechanism of bacterial metal resistance & genetic	
	engineering for specificProteins.	
	• Bioreactors for bioabsorption-packed bed, fluidized bed,	
	rotating disc, single blanket, sequential reactors	
	Phytoremediation & its use in biotechnology	
	Bioleaching of metals	
	Biochemical mechanism of bioleaching	
	Extraction from mixtures	
	Types of bioleaching	
	• Methods for bioleaching-Tank & heap bioleaching	
	• Microorganisms used for bioleching	
	PRACTICAL	Credits
RPZOOP401	Basics Of Industrial & Environmental Biotechnology- II	2
1.	Immobilize Yeast cells in calcium alginate & prepare a bioreactor	
	column to demonstrate Invertase activity in the bioreactor column.	
2.	Antibiotic sensitivity test.	
3.	To plot a growth curve for the microorganisms provided.	
4.	To determine the portability of given water sample by MPN	
	method.	

REFERENCES:

- 1. Johan E. Smith, Biotechnology, 3rd Edition, Cambridge Univ. Press
- Colin Rateledge and Bjorn Kristiansen, Basic Biotechnology, 2nd Edition, Cambridge Univ.
 Press
- 3. Susan R. Barnum, Biotechnology An Introduction, Vikas Publishing House
- 4. Bernard R. Glick and Jack J. Pasternack, Molecular Biotechnology Principles and applications of recombinant DNA, ASM Press, Washington DC.

- 5. Alexander N. Glazer and Hiroshi Nikaido, Microbial Biotechnology Fundamentals of applied microbiology, W. H. Freeman and Co, New York
- Indu Shekar Thakur, Environmental Biotechnology Basic concepts and applications, I. K. International Pvt. Ltd, Mumbai, New Delhi
- John A. Thomas (Ed.), Biotechnology and safety assessments, 2nd Edition, Taylor and Francis
- 8. S. S. Purohit, Biotechnology Fundamentals and applications, 3rd Edition, Agrobios, India
- Patent Facility Centre (PTC) Technology information, Forecasting and Assessment Council (TIFAC), Department of Science and Technology, New Delhi

Course Code: RPSZOO402

Course Title: Genome Management, Manipulation, Regulations and Patents in Biotechnology

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Evaluate and analyse different tools used for genetic engineering.
CO 2	Compare and contrast between different tools for gene transfer techniques
• (and cloning vectors.
CO 3	Understand and comprehend the concept of manipulation of gene expression
	in eukaryotes.
CO 4	Understand the human genome project, its applications and interpret genetic
	linkage maps.
CO 5	Construct genetic linkage maps and physical maps and integrate them.
CO 6	Understand and comprehend the rules and regulations involved in patent
	application in the broad field of biotechnology.

RPSZOO402	Genome Management, Manipulation, Regulations and Patents In Biotechnology	Credits 4
Unit-I	Genome management	15 Lectures
	 The Basic tools of genetic engineering Gene transfer techniques: Protoplast fusion, calcium phosphate, precipitation, electroporation, liposome, ligand mediated, gene gun or biolistic approach, viral mediated 	0
	 Selection and screening of recombinants Nucleic acid probes and hybridization, Southern blotting and Northern blotting. Immunological assays for identification of gene product, Western blot, Flow cytometry. 	
	Cloning Vectors	
	 Retrovirus and SV40 vectors Special purpose vectors- Expression vectors, Secretion vectors, Shuttle or bi-functional vectors, single stranded phage and phagemids. 	
Unit-II	Manipulation of gene expression in eukaryotes	15
		Lectures
	 Eukaryotic gene expression Introduction of DNA into fungi-yeast and filamentous fungi (fungal transformation) 	
	 Heterologous proteins production in yeasts Heterologous proteins production in filamentous fungi 	
	 Cultured insect cells expression systems Baculovirus transfer vector 	
10	Mammalian cell expression systems- Human Papova BK virus shuttle vector	
Unit-III	The human genome project	15 Lectures

RPZOOP402	PRACTICAL Genome Management, Manipulation, Regulations And Patents In Biotechnology	Credits 2
1.	Restriction-digest the given DNA sample &demonstrate the separation of fragments by performing agarose gel electrophoresis. Interpret the results by comparing with the standard digests provided.	10
2.	Demonstrate the western blotting technique for the given sample of protein.	0,
3.	Demonstrate the effect of medium on growth curves of given microorganism, using two different media (minimal &enriched).)

REFERENCES:

- 1. R. S. Crespi; Patents a basic guide to patenting biotechnology, Cambridge Univ. Press
- R. E. Speir, J. B. Griffiths, W. Berthold (Ed), Animal Cell Technology Products of today, prospects of tomorrow, Butterworth –Heinman Publishers
- 3. Martin Fransman, GerdJunne, AnnemiekeRoobeek (Ed), The Biotechnology revolution?, Blackwell Scientific Publishers
- 4. Terence Cartwright, Animal Cells as Bioreactors, Cambridge Univ. Press
- 5. A. Rosevear, John F. Kennedy, Joaquim M. S. Cabral, Immobilized enzymes and cells, Adam Hilger Publishers, Bristol and Philadelphia
- 6. Micheal P. Tombs and Stepan E. Harding, An Introduction to polysaccharide biotechnology
- 7. T. A. Brown, Gene Cloning An Introduction, 3rd Edition, Nelson Thornes
- Bob Old and S. B. Primrose, Principles of Gene Manipulation, 5th Edition, Wiley Blackwell Publishers
- 9. U. Satyanarayan, Biotechnology, 2007 Reprint, Uppala Author Publisher Interlink
SPECIALIZATION – ANIMAL PHYSIOLOGY

Course Code: RPZOP403

Course Title: Comprehensive Physiology-II

Academic year 2020-21

16.0

COURSE OUTCOMES:

COURSE	DESCRIPTION	
OUTCOME	Upon successful completion of this course, learners will be able to;	
CO 1	Understand the physiology of respiration & nitrogen metabolism.	
CO 2	Detailed learning in excretion physiology and studying the excretory systems present in various animals.	
CO 3	Explore the new technologies used for human interventions.	
CO 4	Understand the physiology of hormones in detail.	

RPZOP403	Comprehensive Physiology-II	
Unit–I	Physiology of Respiration and Nitrogen Metabolism	
		Lectures
	Respiration:	
	Transition from water to land- Vertebrates and invertebrates.	
	O2 consumption, RQ and modifying agents:	
•	Activity, Temperature, Salinity, Photoperiod, Development,	
~	Hibernation, Animal size and metabolism.	
	Respiratory functions of blood:	
	Respiratory pigments, respiratory acidosis and alkalosis, Alkali	
	reserve Control and co-ordination of respiration	
	Nitrogen Metabolism:	
	Amino-N Metabolism, Nucleic acid metabolism, Nitrogenous	
0~	waste products.	
	Ammonia toxicity and detoxification pathways-	
	Ammonotely, Ureotely, Purinotely, uricotely, Storage excretion.	
	Patterns of detoxification pathways in eggs and during	
	metamorphosis, Phylogenetic patterns.	

Unit–II	Dynamics of physiological fluids-composition	15 Lectures
	Dynamics of fluid composition:	
	Body fluid composition- water, solute and Intracellular regulation.	
	Cutaneous evaporation, Respiratory evaporation, Integrated	
	functioning for nitrogen excretion and osmoregulation Contractile	\sim
	vacuole, Coelomoducts, Flame cells, Green gland, Malpighian	
	Tubules, Invertebrate Nephredia and Vertebrate Nephron	N
	Comparative physiology of vertebrate kidney	
	Kidney stones and kidney transplants - a human perspective	
	Transfusion, Blood Replacement- A human perspective.	
	Haemodialysis and peritoneal dialysis- A human perspective.	
Unit–III	Physiology of Continuity of Life	15
		Lectures
	Physiology of Reproduction:	
	Selfish gene, evolution of gametes, maternalDNA	
	Endocrine regulation of reproduction in invertebrates, Molluscs,	
	Crustaceans, Insects	
	Comparative account of vertebrate gonadotropins, gonadalsteroids.	
	Interaction of steroid hormones and nervoustissue.	
	Human intervention in Reproduction Contraceptives, MTP,	
	Treatment of Infertility	
	Assisted Reproduction Techniques- IFV, GIFT, ICSI, ZIFT, DI, AID	
Unit–IV	Endocrine regulation, sensory & effecter physiology	15
		Lectures
\sim	Physiology of Endocrine Regulation:	
	Specificity, Membrane bound receptor system, Cytosolic receptor	
	system, Invertebrate Endocrine System, Lower invertebrates,	
	Annelids, Molluscs, Crustaceans, Insects	
	Regulated supply of hormones: Feedback: Direct and Indirect	
	Hypothalamo-Hypophysicalaxis, Pineal-Pituitarygland, Thyroidand	
	Adrenalgland, G-E-P(Gastro-entero-pancreatic) cells, Renal	
	hormones Cardiac hormones, Prostaglandins.	

	StructuralandFunctionalClassification,Modality Intensity, Sensory	
	coding	
	Various receptors-Chemoreception,	
	Mechanoreception, Electroreception, Thermoreception,	
	Photoreception.	
	Physiological	
	effectors:Cnidoblasts,BioluminescentsystemsChromatophores,	
	electric organs.	
	Ć	\mathbf{O}
	PRACTICAL	Credits
RPSZOPP403	Comprehensive Physiology-II	2
1.	Determination of Urea, Creatinine in blood -Human/goat	
2	Determination of sorum content of uric acid, cholasteral	
2.	Human/goat	
3	Effect of injection of insulin/ glucagon on the blood sugar and	
5.	liver glycogen in ret/ mouse	
	Pouting uring tests and properation of report as per pathological	
4.	laboratory	
5	Deformance of Qualitations technique to demonstrate immune	
5.	diffusion	
	Unitusion	
0.	Demonstration of single radical immune diffusion of antibody and	
	antigen	
/.	ammonium hydrovide/ ammonium ahlaride) on a suitable fish	
	animomum hydroxide/ animomum chronde) on a suitable fish exposed to appropria stress for $2/7/15$ days with reference to the	
	following peremoters:	
	a Level of excretory ammonia	
•	a. Level of excition animolia by a second brain glutamate dehydrogenase	
	c. Level of amino acid content of muscle, gill, brain and liver	
8	A survey based project to study physiological diagnostic tools	
0.	with the help of local pathological laboratory/hospital	
9	Effect of administration of carbon tetra chloride in rat/mice with	
	reference to following parameters	
	a Total linid and free fatty acid content of liver	
	b. Free fatty acid content of plasma	
	c. Level of activity of the following enzymes: $A = AT$	
	AICP ACP I DH SDH and ATPace	
	AICE, ACE, LDE, SDE alle ATPase	

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR M.Sc. ZOOLOGY (2020-2021) Explore e Experience

REFERENCES:

- 1. A. G. Giese: "Cell Physiology" (3rd Ed) Saunders, Toppan
- 2. Gerald Karp: "Cell Biology" McGraw Hill Kogakusha Ltd.
- 3. Darnell, Loddish, Baktimore: "Molecular Cell Biology" Scientific American Books.
- 4. C. A. Keil, E. Neil & E.N. Joeb (1982): "Samson Wright, Applied Physiology" Oxford Univ. Press.
- 5. R. Eckert & D. Randall (1982): "Animal Physiology: 2nd Ed." W. H. Freeman & Co.
- 6. W. A. Hoar (1982): "General & Comparative Animal Physiology 3rd Ed." Prentice Hall Inc.
- 7. C. L. Prosser (1973): "Comparative Animal Physiology" W. B. Saunders.
- 8. C. Ladd Prosser Ed. (1991): "Neural & Integrative Animal Physiology" "Comparative Animal Physiology", 4th Ed.Wileg Liss Publ.
- 10. C. Ladd Prosser Ed. (1991): "Environmental & Metabolic Animal Physiology" "Comparative Animal Physiology" 4th Ed. Wileg Liss Publ.
- 11. Withers, P.C. (1983): "Comparative Animal Physiology" International Ed. Saunders College Publishing.

Course Code: RPSZOP404

Course Title: Environmental and Applied physiology-II

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION	
OUTCOME	Upon successful completion of this course, learners will be able to;	
CO 1	Enumerate the pressure as environmental factor and study its effect at	
	cellular level.	
CO 2	Understand and gain the knowledge about temperature as an environmental	
	factor and study its importance.	
CO 3	Learn in detail about the biological rhythms and Photoperiodism.	
CO 4	Understand the antibodies and organ function test as clinical diagnostic tool.	

Detailed Syllabus		
RPSZOP404	Environmental and Applied physiology-II	Credits:
		4
Unit- I	Pressure as an environmental factor	15
		Lectures
	Pressure as an environmental factor :	
	• Fundamental effects of pressure on biological system	

76

٠

٠

•

•

٠

•

Unit-II

	 BiochemicaladaptationsofEctothermy:Antifreezesubstances, Heatshockproteins. 	
Unit- III	Radiation and Physiology of Biological Rhythms	15
		Lectures
	Physiology of Biological Rhythms and timings:	
	• Temporal organization of the cells	
	Circadian Rhythms. Synchronization of circadian rhythms	
	• Dormancy in fresh water and terrestrial animals	
	• Preparatory phases, Induction of dormancy, Arousal from	
~	dormancy Entrainment and dormancy	
\sim	Diapause in insects-Induction, Factors affecting and termination	
	of Diapause, Diapause and endocrine functions	
	Photoperiodism	
	Biological clocks	
Unit- IV	Physiological Tools for clinical diagnostics	15

	Trusheid IIIV	
	Typhold, HTV	
	Monoclonal antibodies as diagnostic tools:	
	• Detection of HCG, Diagnostic of STD, Streptococcal throat	
	infections, Herpes and Cancer	
	Organ Function Tests as diagnostic tools:	6
	Liver function tests and toxicity tests	
	Pancreatic function tests	
	Gastric function tests	
	Kidney function tests.	O '
	S	
		A 11
RPSZOPP404	PROJECT	Credits 2
• Research	project will be executed; results tabulated & analyzed using approp.	riate
statistical	tools.	
• The resear	rch project will be submitted in the form of dissertation at the time of	of practical
examinati	on.	

- K. Schmidt Niel (1983): "Animal Physiology: Adaptation & Environmental" 3rd Ed. Cambridge Univ. Press.
- R. W. Hill (1978): "Comparative Physiology of Animals An Environmental Approach" Harper & Row Publ.
- 3. P. W. Hochachka & G. M. Somero (1973): "Strategies of Biochemical Adaptation".
- 4. J. G. Philips (1975): "Environmental Physiology" Blackwell Scientific Publ.
- J. R. Bernstein (1972): "Biochemical Responses to Environmental Stress" Academic Press
- 6. Harold Harper: "Review of Physiology Chemistry" 4th Ed. Maruzen Asian Ed. Lang Medical Publ.
- 7. Richard Dawkins (1989): "Selfish Gene" Cambridge Univ. Press.
- 8. Leycock & Wise "Essential Endocrinology" 2nd Ed. ELBS. Oxford Univ. Press.
- Introduction from Rac Silver & Karvey Feder: "Hormones & Reproduction Behaviour" Scientific Americal (Readings from) W. H. Freeman & Co.
- Marie A. Moisio & Elmer W. Moisio: "Understanding Laboratory & Diagnostic Tests" (1998) Delmar Publishers

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr. No.	Evaluation type	Marks
1.	Two Assignments/Case study/Project/Research paper review	20
2.	One class Test (multiple choice objective question)	20

B) External Examination- 60%- 60 Marks

Semester End Theory Examination:

- 1. Duration These examinations shall be of **2hours 30 mins** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Questions	Options	Marks	Questions on
Q.1	Any 1 out of 2	12	Unit- I
Q.2	Any 1 out of 2	12	Unit- II
Q.3	Any 1 out of 2	12	Unit- III
Q.4	Any 1 out of 2	12	Unit- IV
Q.5	3 short notes out of 5	12	All Units

Practical Examination Pattern:

C) External Examination: 50 Marks

Particulars	Marks
Journal	05
Experimental tasks/ Viva	45
Total	50

D) Modality for Project

Abstract	04	
Materials and methods	04	
Procedure followed	04	
Observation	04	
Interpretation of results	06	
Conclusion and discussion	08	
Bibliography	04	
Viva voce base on the project	08	
Power point presentation	08	
Total- 50 Marks		

Course	RPSZOO40	1	RPSZOO4	02	RPSZOP4	03	RPSZOP	404	Grand
									Total
	Internal	External	Internal	External	Internal	External	Internal	External	
Theory	40	60	40	60	40	60	40	60	400
Practical's	5	0		50	5	50		50	200

Overall Examination & Marks Distribution Pattern Semester- IV

Resolution No.: AC/I(19-20).2.RPS11 S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for: Semester III & IV

Program: M.Sc-II

Program Code: Zoology (RPSZOO)

Specialization- Oceanography

(Credit Based Semester and Grading System for the academic year 2020–2021)

SEMESTER-III

OCEANOGRAPHY

9

Course	Unit	TITLE	Credits
RPSZOO301	Basics	Of Industrial & Environmental Biotechnology-I	
	I	The implications of recombinant DNA technology	
		of commercial products and microbial synthesis	\mathbf{O}
	II	Large scale culture & production from recombinant	4
		microorganisms&genetically	
		engineered animal cells	
	III	Medical Biotechnology	
	IV	Environmental Biotechnology I	
RPSZOO302	Geneti	c Engineering Techniques And Its Applications	
	Ι	Genome management and analysis	
	II	Manipulation of gene expression in	
		prokaryotes	4
	III	Bioinformatics	
	IV	Animal biotechnology and Human therapies	
RPSZOG303	G	eneral, Physical, Chemical And Biological Oceanography	
	Ι	General Oceanography	
	II	Physical Oceanography	
	III	Chemical Oceanography	4
	IV	Biological Oceanography	4
RPSZOG304	Plank	tology, Fish, Fishery Science, Immunology Of Fish And Aquaculture	
	Ι	Planktology	
	II	Fish And Fisheries Science	
	III	Immunology of Fish	4
•	IV	Aquaculture	4
		PRACTICAL	
RPSZOOP301		Basics Of Industrial & Environmental Biotechnology-I	2
RPSZOOP302		Genetic Engineering Techniques And Its Applications	2
RPSZOGP303		General, Physical, Chemical And Biological Oceanography	2
RPSZOGP304		Project	2
Grand Total			24

Course Code: RPSZOO301

Course Title: Basics of Industrial and Environmental Biotechnology -I

Academic year 2020-21

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Understand and analyse the concepts of recombinant DNA technology,
	GMOs, antibiotic resistant genes.
CO 2	Identify different commercially useful amino acids.
CO 3	Evaluate and comprehend the methods of Large-scale culture production and
	maintenance.
CO 4	Compare and contrast between different methods of fermentation and their
	benefits.
CO 5	Identify and differentiate between different types of vaccines and their
	applications.

COURSE OUTCOMES:

RPSZOO301	Basics Of Industrial & Environmental Biotechnology -I	Credits
		4
Unit- I	The implications of recombinant DNA technology of	15
	commercial products and microbial synthesis	Lectures
	The implications of recombinant DNA technology	
	General account on applications of biotechnology	
	Commercialization of biotechnology & biotech companies	
	Prospects of novel food technology	
	Economics of microbial biotechnology	
	• Areas of significant public concern: Antibiotic resistance	
	marker gene, transfer of allergies, pollen transfer from GM	
	plants, social, moral & ethical issues associated with GMOs.	
	Amino acids & their commercial use – production strain,	
	process of L-glutamate, L-aspartate, L-phenylalanine, L-	
	tryptophan.	

		-
		Lectures
	Biomass utilization	
	• Microorganisms in lignocellulose degradation	
	• Isolation of prokaryotic & eukaryotic cellulase gene	
	Manipulation of cellulase gene	
	• Production of single cell proteins by using biomass as raw material	\mathbf{S}
	• Commercial production of fructose and alcohol from biomass	
	• Improvements of fructose and alcohol production	
	• Fuel ethanol from biomass.	
	Biogas utilization	
	Bioremediation of aerobic compounds	
	• Characteristics of xenobiotics in the environment	
	• Characteristics of aerobic microorganisms for degradation of	
	organic pollutants	
	• Genetic engineering of biodegradative pathways-	
	• Manipulation by transfer of plasmid, manipulation by gene alteration	
	• Degradation of xenobiotic compounds-petroleum products, n-	
	alkanes, alkenes, cycloaliphatic compounds, aromatic	
	hydrocarbons, polyaromatic hydrocarbons, chlorinated organic	
	compounds (aliphatic & aromatic)	
	PRACTICAL	Credits
RPSZOOP301	Basics of Industrial & Environmental Biotechnology-1	2
1.	Demonstration of aseptic technique: Work place for aseptic	
	handling, packing glassware (flasks, test tubes, pipettes, petri dish)	
	for sterilization, aseptic transfer of liquids (pipetting from flask to	
	test tube)	
2.	Preparation of LB agar plate, slant, butt & demonstration of	
\mathbf{V}	streaking technique using bacterial culture to obtain isolated	
2		
3.	Isolation of bacterial culture on differential media (Mac	
	Conkeys agar).	

- 1. Johan E. Smith, Biotechnology, 3rd Edition, Cambridge Univ. Press
- Colin Rateledge and Bjorn Kristiansen, Basic Biotechnology, 2nd Edition, Cambridge Univ. Press
- 3. Susan R. Barnum, Biotechnology An Introduction, Vikas Publishing House
- 4. Bernard R. Glick and Jack J. Pasternack, Molecular Biotechnology Principles and applications of recombinant DNA, ASM Press, Washington DC.
- 5. Alexander N. Glazer and Hiroshi Nikaido, Microbial Biotechnology Fundamentals of applied microbiology, W. H. Freeman and Co, New York
- InduShekar Thakur, Environmental Biotechnology Basic concepts and applications, I. K. International Pvt. Ltd, Mumbai, New Delhi
- John A. Thomas (Ed.), Biotechnology and safety assessments, 2nd Edition, Taylor and Francis
- S. S. Purohit, Biotechnology Fundamentals and applications, 3rd Edition, Agrobios, India
- Patent Facility Centre (PTC) Technology information, Forecasting and Assessment Council (TIFAC), Department of Science and Technology, New Delhi

Course Code: RPSZOO302

Course Title: Genetic Engineering Techniques and Its Applications

Academic year 2020-21

COURSE OUTC	OMES:
COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Understand the basic concepts of Genetic engineering, vectors, genomics,
	and proteomics.
CO 2	Compare and contrast between different types of cloning vectors,
	electrophoresis techniques and their applications.
CO 3	Evaluate and comprehend concepts of gene expression in prokaryotes and
	bioinformatics.
CO 4	Develop skills and demonstrate different techniques of aseptic transfer.
CO 5	Isolate and identify different bacterial colonies on agar plates.

RPSZOO302	Genetic Engineering Techniques And Its Applications	Credits
		4
Unit-I	Genome management and analysis	15
		Lectures
	The Basic tools of genetic engineering	
	Chemical Synthesis of DNA-Oligonucleotide synthesis by	
	Phosphoramidite method, Synthesis of genes	
	• DNA Sequencing Maxam-Gilbert method, Sanger's	
	• dideoxynucleotide method, By using bacteriophage M13, By	
	Primer walking, Next generation sequencing	
	• PCR and its types (RT-PCR, nested and multiplex)	
	Cloning Vectors	
	• General purpose plasmid vectors (pUC19, pBR322) (Bacterial	
0	Vectors)	
	Bacteriophage and cosmid vectors	
	• Yeast artificial chromosomes (YACs)	
	Analysis of genome/proteome	

	Recombinant DNA technology to prevent animal diseases	
	Conservation biology-Embryo transfer	
	• Regulation of transgenic animals and patenting genetically	
	engineered animals	
	• Knockout mice (Cre- loxP system)	,
	Human therapies	~ 0
	• Tissue engineering: Skin, liver, pancreas	
	Xeno transplantation	
	Antibody engineering	N
	• Cell adhesion based therapies: Integrins, Inflammation, Cancer	
	and metastasis	
	• Targeted gene replacement for correcting a mutated gene	
	Site directed mutagenesis	
	PRACTICAL	Credits
RPSZOOP302	Genetic Engineering Techniques And Its Applications	2
1.	Determination of Air microflora	<u> </u>
2.	Determinations of viable cell counts in the given culture of	1
	bacteria by dilution, spreading and pour plate technique.	
3.	Using mini-prep method isolate plasmid DNA from the given	1
	strain of bacteria & show the purity of the isolate by performing	
	agarose gel electrophoresis	

- R. S. Crespi; Patents a basic guide to patenting biotechnology, Cambridge Univ. Press
- R. E. Speir, J. B. Griffiths, W. Berthold (Ed), Animal Cell Technology Products of today, prospects of tomorrow, Butterworth –Heinman Publishers
- 3. Martin Fransman, GerdJunne, AnnemiekeRoobeek (Ed), The Biotechnology revolution?, Blackwell Scientific Publishers
- 4. Terence Cartwright, Animal Cells as Bioreactors, Cambridge Univ. Press
- 5. A. Rosevear, John F. Kennedy, Joaquim M. S. Cabral, Immobilized enzymes and cells, Adam Hilger Publishers, Bristol and Philadelphia
- Micheal P. Tombs and Stepan E. Harding, An Introduction to polysaccharide biotechnology
- 7. T. A. Brown, Gene Cloning An Introduction, 3rd Edition, Nelson Thornes

- Bob Old and S. B. Primrose, Principles of Gene Manipulation, 5th Edition, Wiley Blackwell Publishers
- 9. U. Satyanarayan, Biotechnology, 2007 Reprint, Uppala Author Publisher Interlink

SPECIALIZATION- OCEANOGRAPHY

Course Code: RPSZOG303

Course Title: General, Physical, Chemical and Biological

Oceanography

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Explain the theory of plate tectonics and correlate it to the formation of the
	major features of the sea-floor.
CO 2	Demonstrate how the oceans are connected to and drive major Earth ocean
	processes, such as atmospheric and oceanic circulation, climate and weather
	being helpful to students in the field of research.
CO 3	Understand the different parameters of Sea supporting life under water.
CO 4	Interpret the relationship of Salinity, Temperature and Density.
CO 5	Enumerate the factors affecting on marine life.

RPSZOG303	General, Physical, Chemical and Biological Oceanography	Credits
		4
Unit–I	General oceanography	15
		Lectures
V.	Terminology of submarine topography	
	Continental shelf, continental slope, submarine canyons,	
	submarine mountain ranges, Guyots and trenches with special	
	reference to the Indian Ocean and adjacent seas.	
	A general knowledge of typical oceanographic research vessel	
	and its equipments, oceanographic labs and stations of the world	

	and India.	
	General properties of sea water: Salinity, Chlorinity,	-
	Temperature, Light, Density, Pressure, Salinity-Temperature-	
	Density Relationship (STD).	
Unit–II	Physical oceanography	15 Lectures
	Vertical circulation: wind induced circulation, Thermohaline	
	circulation and upwelling of water.	\mathbf{O}
	Waves: Characteristics of waves, deep water and shallow water	
	waves, transitionalwaves, wind generated waves, internal waves	
	and Tsunami	
	Tides: Tides generating forces, equilibrium theory of tides,	
	dynamic theory of tides, tides as a source of power.	
	Currents: Types of currents, major currents of the world,	
	Coriolis effect and El Nino effect.	
	Oceanographic circulation: Ekman spiral, geotropic current,	
	westward intensification with dynamic topography.	
	× O ^r	
Unit–III	Chemical oceanography	15
		Lectures
	Composition of sea water- constancy of its composition and	
	factors affecting the composition, major and minor constituents,	
	trace elements and their biological role.	
	Dissolved gases in the sea water and their role in the	
	environment, CO2system, dissolved O2 and oxygen profile,	
	hydrogen sulphide.	
	Nutrients in the ocean, their cycles and factors influencing their	
٠.	distribution	
~	a) Nitrogen b) Phosphorus c) Silicon.	
Unit–IV	Biological oceanography	15
XY		Lectures
	Division of marine environment.	
	Marine biotic diversity: Plankton, Nekton, Benthos- brief	
r	account, Implications of species richness, measuring	
	diversity, quadrients of species diversity, models explaining	
	diversity gradient.	
	• Intertidal organisms and their zonation.	
	Changing shore lines and erosion.	

		Effect of physical factors on marine life	
		• Light: photosynthesis, colouration, structural adaptations, bioluminescence.	
		 Temperature: tolerance, geographical distribution, size, calciumprecipitation, metabolism, bipolarity, tropical submergence and periodicity. 	
		• Salinity: tolerance and distribution, size, buoyancy and osmoregulation.	
		Currents: role in nutrition, transportation and propogation.Marine bacteria and their role.	5
		PRACTICAL	Credits
RPSZ	COGP303	General, Physical, Chemical and Biological Oceanography	2
	1.	Physical and chemical	
		oceanography:(Uniform methods for all	
		colleges to be followed	
		Determination of physico-chemical	
		parameters:	
		i. Salinity (Argentometric and	
		conductivity method)	
		ii. Dissolved oxygen,	
		iii. Carbon dioxide.	
		iv. Nitrates-nitrites.	
		v. Silicates.	
		vi Phosphate-phosphorus	
	2	Textural features.	
	4.	Sediment analysis- size fraction (sand silt clay)	
	3	Identification of foraminiferans and	
	5.	radiolarians from sand	
		Estimation of primary productivity by	
	4.	light and dark bottle	
		Identification of intertidal organisms:	
	5.	Booky share Detalle Chitan Eissuralle Mutilus species	
		• Rocky shore - Patella, Chiton, Fissurena, Mythus species,	
	·	<i>Fernaviriais</i> , Cardium, Balanus, Gorgonids, Littorina and	
		• Sandy shore: Solen, Umbonium, Oliva, Pea crab, Fiddler	
		crab, Molluscan shells, Starfish and Balanoglossus.	
		• Muddy shore : Lingula, Chaetopterus, Arenicola, Tubiculus	
		worm and Mud skipper.	
		Laboratory procedure for quantitative estimation of plankton	

Platycephalus punctatus
xv. Family-Gobidae
<u>Periophthalmussps.,Boleophthalmussps</u> .
xvi. Family- Sphyraenidae
Sphyraenaacutippinis
vii. Family- Mugillidae
Mugilsps.
viii. Family- Gadidae
Bregmacerossps.
xix. Family- Pleuronectidae
Psettodeserumei, Cynoglossus elongatus
xx. Family- Siluridae
Arius dussumieri
xxi. Family- Scopelidae
Sauridatumbil, Harpodonnehereus
xii. Family- Sombresocidae
Belone stongylurus, Hemiramphussps.
xxiii.Family- Clupeidae
Pellonafeligera, Clupea longiceps
xxiv.Family- Chirocentridae
Chirocentrusdorab
xxv.Family-
Muraenesox <i>Muraenesox</i> sps.
10. Cells and tissues of Immune system of fishes

- 1. Svedrup et al., The Oceans.
- 2. N.B. Nair and D.H Thampi., Atextbook of marine ecology, T-M-H.
- 3. Harold Thurman, Introductory oceanography, Prentice Hall. London.
- 4. QasimS.Z., Glimpses of Indian Ocean, Sangum Bodes Ltd. London. NavyaPrinters, Hyderabad.
- 5. Michael King, Fisheries Biology assessment and management, Fishing News Publishers, 1995.
- 6. R. GordobPirje, Oceanography.
- 7. Newell and Newell, Marine Plankton.
- 8. Jhingran, Fish and fisheries
- 9. P. Michal, Ecologival methods for field and laboratory investigations.
- 10. R.V. Tait, Marine zoology, Oxford press.
- 11. David Ross, Introduction to Oceanography.
- 12. Carl Schliper, Research method in marine biology.

- 13. B.F. Chapgar, Sea Shore life of India, SIDGWICK and JACKSON, London
- 14. D.V. Bal and K.V. Rao, Marine fisheries of India, T-M-H.
- 15. Russel and Young, The Seas

Course Code: RPSZOG304

Course Title: Planktology, fish, fishery science, immunology of fish

and aquaculture

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Gain an overview of fishery science and aquaculture industry.
CO 2	Enumerate different adaptations of plankton and interrelate it with environmental conditions.
CO 3	Identify the role of the immunological system of fish, its components and various external factors that affect it.
CO 4	Compare and contrast between different fisheries and aquaculture systems.
CO 5	Understand and recall fish classification with the help Francis Day Volume.

RPSZOG304	Planktology, fish, fishery science, immunology of fish and	Credits
	aquaculture	4
Unit –I	Planktology	15
		Lectures
	Classification of Plankton:	
	Adaptation to planktonic life. Factors influencing the	
	distribution and abundance, plankton bloom, patchiness,	
0	vertical distribution and red tide.	
	Diurnal migration of zooplankton.	
	Inter-relationship between phyto and zooplankton.	
Unit–II	Fish and fisheries science	15
		Lectures

NI 52001 304	I NUJEU I	
RPS70CP304		Credite
•	Impact of aquaculture on environment	
	Aquaculture of Indian major carps and MagrobrachiumPosenbergii	
	Culture, Aquaranching.	
	Culture, PenCulture, Running Water Aquaculture, Raft	
	Different systems of aquaculture such as Pond Culture, Cage	
	aquaculture and criterion for their selection.	
	Aquaculture practices in India. Cultivable organisms for	
	History, scope and importance of aquaculture:	
		Lectures
Unit –IV	Aquaculture	15
	Fish leucocytes	
	Ontogeny of fish immune system	
	Fish vaccinations	
	Response to pathogens	
	Defense system : Specific and non-specific	
Unit –III	Immunology of fish	15 Lectures
	CRZ and fishing regulations	
	• Seaweeds	
	Molluscan fisheries.	CY.
	Shrimps Lobster and Crab	
	Crustacean fisheries: Prayuns (penaeid and non penaeid)	~ 0
	Sardine, Carangids, Tuna, Sole fish, Harpodon, Ribbon fish	
	• Teleosts:Sciaenoids, Indian salmon, Seer fish, Mackerel,	
	• Major commercial fisheries: Elasmobranchs (shark and ray)	
	FAO.	

- Each student will choose a different topic related to the syllabus.
- Students will submit their Project Proposal Having Introduction, Review of Literature,
- Materials and Methods, Expected Outcomes & References.

- 1. Kurian and Sebastian, Prawn and prawn fisheries of India.
- 2. M. Krishna Pillai. Introduction to Planktology, Himalaya Publishing
- 3. A.A. Fincham. Basic marine biology, British Museum Natural History.
- 4. Latha Shenoy. Course manual in fishing technology, CIFE, Versova, Mumbai.

- 5. Jefferey F. Raymond, Plankton and productivity, Vol. I and II.
- 6. J.S.Levington, Marine Biology, Function, biodiversity, ecology. Oxford University Press.
- 7. Wealth of India, Vol. IV, CSIR Publications.
- 8. S.P. Biswas, Manual of methods in fish biology, South Asian publishers private Ltd., New Delhi.
- 9. J.P. Rilcy and R, Chester, Introduction to marine chemistry, Academic Press, London and New Delhi.
- 10. American Public Health Association-2000.
- 11. J.V.R. Pillai, Aquaculture principles and plasia, Blackwell Scientific pub.
- 12. Das P. and JhingranA.C.G., Fish genetics in India.
- 13. Colin E. Purdon, Genetics and Fish breeding, Chapman and Hall.
- 14. Schroder J.J., Genetics and Mutagenesis of fish, Chapman and Hall.
 15. P. Bensam. Development of marine fishery sciences in India, Daya publishing House.
 - Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr. No.	Evaluation type	Marks
1.	Two Assignments/Case study/Project/Research paper review	20
2.	One class Test (multiple choice objective question)	20

B) External Examination- 60%- 60 Marks

Semester End Theory Examination:

- 1. Duration These examinations shall be of **2hours 30 mins** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Questions	Options	Marks	Questions on
Q.1	Any 1 out of 2	12	Unit- I
Q.2	Any 1 out of 2	12	Unit- II
Q.3	Any 1 out of 2	12	Unit- III
Q.4	Any 1 out of 2	12	Unit- IV
Q.5	3 short notes out of 5	12	All Units

Practical Examination Pattern:

C) External Examination: 50 Marks

Particulars	Marks
Journal	05
Experimental tasks/ Viva	45

Total 50

D) Modality for Project

D) Modality for Project	
Topic / Title	02
Literature survey	08
Objective and purpose	06
Material and Method	08
Work plan with timeline	10
Expected outcome	08
Viva voce based on proposal	08
Total-	- 50 Marks

Overall Examination & Marks Distribution Pattern Semester-III

Course	RPSZOO301		RPSZOO302		RPSZOG303		RPSZOG304		Grand Total
	Internal	External	Internal	External	Internal	External	Internal	External	
Theory	40	60	40	60	40	60	40	60	400
Practical's	5	0	5	0		50	5	0	200

SEMESTER-IV

OCEANOGRAPHY

50

Course	Unit	TITLE	Credits
RPSZOO401	Ba	sics Of Industrial & Environmental Biotechnology II	4
	T	Microhial synthesis of commercial products	
	I II	Microbial synthesis of commercial products	
	11	histochnology	
	III	A gricultural Biotechnology	
	IV	Environmental Biotechnology II	
RPSZOO402	Geno	me Management, Manipulation, Regulations And Patents	4
	I	Genome management	
	II	Manipulation of gene expression in eukaryotes	
	III	The human genome project	
	IV	Regulations and patents in biotechnology	
RPSZOG403	Ocear	nographic Instruments And Expeditions, Marine Ecology, Marine Pollution And Biological Resources	4
	Ι	Oceanographic Instruments And Expeditions	
	II	Marine Ecology	
	III	Marine Pollution And Reclamation	
	IV	Biological Resources	
RPSZOG404	Plank	tology, Fish, Fishery Science And Biology Of The Ocean	4
	Ι	Planktology	
	II	Fish And Fisheries Science	
	III	Biotechnology In Fishery And Biometric Studies	
	IV	Biology Of The Ocean	
		PRACTICAL	
RPSZOOP401		Basics Of Industrial & Environmental Biotechnology II	2
RPSZOOP402	6	Genome Management, Manipulation, Regulations And Patents In Biotechnology	2
RPSZOGP403		Oceanographic Instruments And Expeditions, Marine Ecology, Marine Pollution And Biological Resources	2
RPSZOGP404		Project	2
			24

6.0

SEMESTER-IV

Course Code: RPSZOO401

Course Title: Basics of Industrial & Environmental Biotechnology II Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Comprehend and understand the concepts of microbial synthesis of organic acids, polysaccharides, antibiotics, and their applications.
CO 2	Compare and contrast between different methods of immobilization.
CO 3	Evaluate and analyse the different techniques used in agricultural biotechnology.
CO 4	Compare and contrast between different types of bioreactors of bio- absorption and methods of bioleaching.
CO 5	Develop skills and demonstrate the technique of immobilization of cells

	a	
Detailed	Svllabus	
2 oraniou		

RPSZOO401	Basics Of Industrial & Environmental Biotechnology II	Credits
		4
Unit-I	Microbial synthesis of commercial products	15
		Lectures
	Microbial synthesis of commercial products.	
	• Organic acids & their commercial applications – Citric acid,	
	gluconic acid, lactic acid, Acetic acid.	
	 Antibiotics – Cloning antibiotic biosynthetic gene by 	
	complementation & otherAminoglycosides & their use	
	Polysaccharides:	
	• Bacterial polysaccharides: General properties & their	
	commercial applications-	
	• Dextran, Xanthan, Alginate.	
	• Genetic engineering for the large scale production of Xanthan	
	gum & it's modification	
	• Marine polysaccharides: General properties & their	
	commercial application-Agar & agarose, Chitosan	

	• Polyesters: Polyhydroxyalkanoates (PHA)-Biosynthesis of	
	PHA, Biopol-commercial biodegradable plastic.	
Unit -II	Large scale culture & production for industrial biotechnology	15
		Lectures
	Biotransformations	
	• Selection of biocatalyst-screening & use of novel existing	
	biocatalyst	
	Genetic modification of existing biocatalyst (Indigo	
	biosynthesis)	
	Biocatalyst immobilization-	
	Methods of immobilization- Cross linking supported.	
	immobilization adsorption & ionic hinding, covalent coupling	
	lattice entrapment	
	 Immobilized soluble enzymes & suspended cells 	
	Immobilized soluble enzymes & suspended cens	
	Infinobilization of multi-enzyme systems & cens	
	• Immobilized enzyme reactors- Batch reactors, continuous	
	reactors	
	Analytical enzymes-	
	• Enzymes in diagnostic assays: Test strip systems & Biosensor	
	Electrochemical & optical type.	
		15
Unit -111	Agricultural Biotechnology	15
		Lectures
	Agricultural Biotechnology:	
	Nitrogen fixation	
	• Nitogenase-Component of nitrogenase; Genetic engineering	
	of nitrogenasecluster	
•	Hydrogenase-Hydrogen metabolism	
	Genetic engineering of hydrogenase gene	
\sim	Nodulation-Competition among nodulation organisms,	
	genetic engineering of nodulation gene	
	• Microbial insecticides-Toxins of Bacillus thuringiensis, mode	
	of action & use of thuringiensis toxins, thuringiensis toxin	
	gene isolation, genetic engineering of Bacillus thuringiensis	
	strains& cloning of thuringiotoxin gene.	
	• Developing insect resistant, virus resistant & herbicide	
	resistant plant	
	r	
		1

	• Algal products: Fuels from algae, marine natural products &	
	their medical potential-anticancer, antiviral compounds, anti	
	bacterial compounds.	
Unit- IV	Environmental Biotechnology II	15
		Lectures
	Bioabsorption of metals (Recovery from effluents)	. ~ (
	• Bioabsorption by fungi, algae, moss & bacteria	
	• Mechanism of bacterial metal resistance & genetic engineering	
	for specific Proteins.	
	Bioreactors for bioabsorption-packed bed, fluidized bed,	
	rotating disc, single blanket, sequential reactors	
	Phytoremediation & its use in biotechnology	
	Bioleaching of metals	
	Biochemical mechanism of bioleaching	
	Extraction from mixtures	
	Types of bioleaching	
	Methods for bioleaching-Tank & heap bioleaching	
	Microorganisms used for bioleching	
	PRACTICAL	Credits
RPZOOP401	Basics Of Industrial & Environmental Biotechnology- II	2
1.	Immobilize Yeast cells in calcium alginate & prepare a bioreactor	
	column to demonstrate Invertase activity in the bioreactor column.	
2.	Antibiotic sensitivity test.	
3.	To plot a growth curve for the microorganisms provided.	
4.	To determine the portability of given water sample by MPN method.	

- 1. Johan E. Smith, Biotechnology, 3rd Edition, Cambridge Univ. Press
- Colin Rateledge and Bjorn Kristiansen, Basic Biotechnology, 2nd Edition, Cambridge Univ. Press
- 3. Susan R. Barnum, Biotechnology An Introduction, Vikas Publishing House
- 4. Bernard R. Glick and Jack J. Pasternack, Molecular Biotechnology Principles and applications of recombinant DNA, ASM Press, Washington DC.

- Alexander N. Glazer and Hiroshi Nikaido, Microbial Biotechnology Fundamentals of applied microbiology, W. H. Freeman and Co, New York
- Indu Shekar Thakur, Environmental Biotechnology Basic concepts and applications, I. K. International Pvt. Ltd, Mumbai, New Delhi
- John A. Thomas (Ed.), Biotechnology and safety assessments, 2nd Edition, Taylor and Francis
- S. S. Purohit, Biotechnology Fundamentals and applications, 3rd Edition, Agrobios, India
- 9. Patent Facility Centre (PTC) Technology information, Forecasting and Assessment Council (TIFAC), Department of Science and Technology, New Delhi

Course Code: RPSZOO402

Course Title: Genome Management, Manipulation, Regulations and Patents in Biotechnology

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Evaluate and analyse different tools used for genetic engineering.
CO 2	Compare and contrast between different tools for gene transfer techniques
	and cloning vectors.
CO 3	Understand and comprehend the concept of manipulation of gene expression
	in eukaryotes.
CO 4	Understand the human genome project, its applications and interpret genetic
	linkage maps.
CO 5	Construct genetic linkage maps and physical maps and integrate them.

Detailed Syllabus				
RPSZOO402	Genome Management, Manipulation, Regulations and Patents In Biotechnology	Credits 4		
Unit-I	Genome management	15 Lectures		
	 The Basic tools of genetic engineering Gene transfer techniques: Protoplast fusion calcium 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	phosphate, precipitation, electroporation, liposome, ligand mediated, gene gun or biolistic approach, viral mediated	0		
	Selection and screening of recombinants	5		
	• Nucleic acid probes and hybridization, Southern blotting and Northern blotting.			
	• Immunological assays for identification of gene product, Western blot, Flow cytometry.			
	Cloning Vectors			
	Retrovirus and SV40 vectors			
	Special purpose vectors- Expression vectors, Secretion			
	vectors, Shuttle or bi-functional vectors, single stranded phage			
	and phagemids			
Unit -II	Manipulation of gene expression in eukaryotes	15		
		Lectures		
	Eukaryotic gene expression			
	• Introduction of DNA into fungi-yeast and filamentous fungi (fungal transformation)			
	 Heterologous proteins production in veasts 			
	 Heterologous proteins production in filamentous fungi 			
	 Cultured insect cells expression systems Baculovirus transfer 			
٠	Mammalian cell connection systems. Homen Denous DK			
	• Manimanan cen expression systems- Human Papova BK			
Unit-III	The human genome project	15		
0.111-111	The numun genome project	Lectures		
VY.	• The human genome, scope and goals of the project			
	Genetic linkage maps, chromosome walking, restriction mapping			
	Polymorphic DNA markers(RFLP, AFLP, VNTR)			
	• Restriction fragment length polymorphism (RFLP) and its uses			

		1
	• RNAi and its application to treat human disease.	
	Physical maps, Sequence tagged sites.	
	Integrating genetic linkage and physical maps	
	Mapping human diseases	
	• Positional cloning: Getting closer to a disease causing gene	
	(Cystic fibrosis)	~ 0
	• Testing for exons.	
	Limitations of positional cloning. FISH	0,
Unit-IV	Regulations and patents in biotechnology	15
	5	lectures
	Regulating recombinant DNA technology	
	• Regulatory requirements – safety of genetically engineered	
	foods Chymosin, tryptophan, bovine somatotropin	
	• Regulation environmental release of genetically engineered	
	organism (GEO). Ice minus Pseudomonas syringae	
	Regulatory agencies and laws for product regulation	
	• Risk assessment: How much risk?	
	Open field tests of GEO	
	• Development of policy for Human gene therapy	
	Patenting biotechnology inventions	
	• What constitutes the patent?	
	• The patent process	
	• The conditions to be satisfied for an invention to be patentable :Novelty, Inventiveness, Usefulness	
	• Patenting in different countries, types of inventions that are	
	not patentable in India	
	• What is Paris convention? Principal features of Paris	
	convention	
	Patenting multicellular organisms	
	• Patenting and fundamental research	
	PRACTICAL	Credits
RPSZOOP402	Genome Management, Manipulation, Regulations And Patents In	2
	Biotechnology	
1	Destriction direct the given DNA comple & demonstrate the	
1.	separation of fragments by performing agarose gel	
	electrophoresis. Interpret the results by comparing with the	
	standard digests provided.	
		1

	R
	RUIA COLLEGE
1)	Explore • Experience • Excel

2.	Demonstrate the western blotting technique for the given sample
	of protein.
3.	Demonstrate the effect of medium on growth curves of given
	microorganism, using two different media (minimal &enriched).

- R. S. Crespi; Patents a basic guide to patenting biotechnology, Cambridge Univ. Press
- 2. R. E. Speir, J. B. Griffiths, W. Berthold (Ed), Animal Cell Technology Products of today, prospects of tomorrow, Butterworth –Heinman Publishers
- 3. Martin Fransman, GerdJunne, AnnemiekeRoobeek (Ed), The Biotechnology revolution?, Blackwell Scientific Publishers
- 4. Terence Cartwright, Animal Cells as Bioreactors, Cambridge Univ. Press
- 5. A. Rosevear, John F. Kennedy, Joaquim M. S. Cabral, Immobilized enzymes and cells, Adam Hilger Publishers, Bristol and Philadelphia
- 6. Micheal P. Tombs and Stepan E. Harding, An Introduction to polysaccharide biotechnology
- 7. T. A. Brown, Gene Cloning An Introduction, 3rd Edition, Nelson Thornes
- 8. Bob Old and S. B. Primrose, Principles of Gene Manipulation, 5th Edition, Wiley Blackwell Publishers
- 9. U. Satyanarayan, Biotechnology, 2007 Reprint, Uppala Author Publisher Interlink

SPECIALIZATION- OCEANOGRAPHY

Course Code: RPSZOG403

Course Title: Oceanographic instruments and expeditions, marine ecology,

marine pollution and biological resources

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	Upon successful completion of this course, learners will be able to;
CO 1	Identify and explain the various oceanographic instruments for the purpose of
	studying physic-chemical parameters of the sea, necessary for research
	purposes.
CO 2	Enumerate the various habitats of marine organisms and their variations.
CO 3	Analyze the repercussions of anthropogenic activities on the sea and
	resources obtained from the sea and economy they generate.
CO 4	Understand and evaluate the marine ecology and impact of pollution on it.

RPSZOG403	Oceanographic instruments and expeditions, marine ecology,	Credits
	marine pollution and biological resources	4
Unit-I	Oceanographic instruments and expeditions	15
•		Lectures
	Oceanographic instruments:	
	Grab (Peterson and Van veen) for benthos collection,	
	naturalist's dredge (Ekman Sanders deep sea anchor dredge),	
	trawl, plankton nets and continuous plankton sampling	
	system, Reversing Nansen bottles, Reversing thermometer,	
	Salinometer, Secchi disc, Stempel's pipette and dilution jar,	
	underwater photography, remote sensing and satellite imaging,	
	SCUBA apparatus.	
	Oceanographic Expeditions: Challenger, Indian Ocean and	
	Antarctic.	
	Law of sea.	
Unit–II	Marine ecology	15

		Lectures
	Coastal ecosystems, estuaries, Coral reefs and Bays	
	Salt marshes and salt pans	_
	Mangroves	_
	Marine eutrophication	
Unit –III	Marine pollution and reclamation	15 Lectures
	Impact of anthropogenic activities:	
	Pollution-	\mathbf{O}^{\prime}
	• Domestic sewage, industrial/heavy metals. Agricultural-	
	fertilizers and pesticides.	
	Oil pollution.	
	• Ocean dumping.	
	Radioactive and Thermal waste.	
	Reclamation.	
	Ocean Acidification	
	Impacts of Global Warming	
Unit –IV	Biological resources	15
		Lectures
	Resources from the sea:	
	Mineral resources:	
	Continental margin.	
	• Deep sea mud oozes and manganese nodules.	
	• Oil, gas and sulphur deposits and role of ONGC.	
	• Bioactive compounds from the sea.	
	• Scientific and economical aspect of seabed exploration and	
	mining.	
	PRACTICAL	Credits
RPSZOGP403	Oceanographic instruments and expeditions, marine ecology,	2
1.	marine pollution and biological resources	
	• 0	
	Oceanographic instruments:	
	i. Nansen reversing bottle.	
	ii. Deep sea reversing thermometer.	
	iii. Bathythermometer	
	iv. Drift bottle	
	v. Ekman's current meter	
	vi Secchi disc	
	vii Plankton nets: Standard net Hensen net and Clarke	
	The Frankton news, Standard net, Hensell net and Clarke	1

	viii. Stemple pipette and counting slide		
	ix. Nekton sampling device-trawls		
	x. Benthic sampling devices-dredges, grabs and corers		
2.	Detection of heavy metals:		
	i Zinc		5
	ii Lead		
	iii Copper.		
3.	Food and feeding in fish.		
4.	Preparation of Zooplankton mountings.	U'	
5.	Biometric studies of fish/ prawn		
	i. Study of relationship between total length and standard		
	length/head length/body depth length/body weight.		
	ii. Calculate correlation (standard length and total length,		
	head length and total length, body depth and total length).		
	Calculate the index values for various relationships.		
6.	Identification of fouling and boring organisms		
	Limnoriasps., Lepas, Balanus, Caprella, Teredo, Littorina,		
	Crassostrea, Pellaria/ Sertularia		
7.	Identification and classification of fresh water fishes		
	Rohu, Catla, Mrigal, Tilapia, Gourami and fresh water giant		
	prawn (Macrobrachiumrosenbergii).		
8.	Crustacean fishery		
	Penaeus monodon, P. indicus, M.monoceros, P. stylifera,		
	Solenoceraindica, Nematopaleomon, Acetes indicus		
9.	Molluscan fishery		
	Meretrix, Pernaviridis, Katelysiasps., Crassostriasps.,		
	Xancuspyrum, Solenkempi, Cuttle fish and gastropods.		
· · · · · · · · · · · · · · · · · · ·			

REFERENCES:

- 1. Svedrup et al., The Oceans.
- 2. N.B. Nair and D.H Thampi., Atextbook of marine ecology, T-M-H.
- 3. Harold Thurman, Introductory oceanography, Prentice Hall. London.
- 4. QasimS.Z., Glimpses of Indian Ocean, Sangum Bodes Ltd. London. NavyaPrinters, Hyderabad.
- 5. Michael King, Fisheries Biology assessment and management, Fishing News Publishers, 1995.
- 6. R. GordobPirje, Oceanography.
- 7. Newell and Newell, Marine Plankton.
- 8. Jhingran, Fish and fisheries
- 9. P. Michal, Ecologival methods for field and laboratory investigations.

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR M.Sc. ZOOLOGY (2020-2021)

- 10. R.V. Tait, Marine zoology, Oxford press.
- 11. David Ross, Introduction to Oceanography.
- 12. Carl Schliper, Research method in marine biology.
- 13. B.F. Chapgar, Sea Shore life of India, SIDGWICK and JACKSON, London
- 14. D.V. Bal and K.V. Rao, Marine fisheries of India, T-M-H.
- 15. Russel and Young, The Seas

Course Code: RPSZOG404

Course Title: Planktology, fish, fishery science and biology of the

ocean

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION					
OUTCOME	Upon successful completion of this course, learners will be able to;					
CO 1	Enumerate the methods used in studies of planktons and learn about their					
	relationship with other marine organisms.					
CO 2	Interrelate the relationship between different plankton species and fisheries					
	and understand the role of plankton as indicator species.					
CO 3	Analyze the statistical methods widely used in research analysis and also					
	the factors affecting the dynamics of a population.					
CO 4	Identify the various endogenous rhythms in the oceans and discuss the					
	types of reproduction and larvae found in marine organisms.					
CO 5	Understand the techniques used in biometric studies of fishes.					

RPSZOG404	Planktology, fish, fishery science and biology of the ocean			
		4		
Unit –I	Planktology	15		
		Lectures		
	Marine algae and plankton in relation to fisheries.			
	Indicator species			
	Methods of collection, preservation and analysis of plankton.			
	Marine Bio-deterioration: Fouling and Boring organisms.			
Unit–II	Fish and fisheries science	15 Lectures		
	Population Dynamics			
	Abundance in population and fishery.			
	Fishery catches and fluctuation.			
	M.S.Y., Optimum Yield, Age Composition, Population			
	Growth, Population Models.			
	Socio-economics of fishermen.			
Unit –III	Biotechnology in fishery and biometric studies	15		
		Lectures		
	Statistical methods:			
	Collection of data, Sampling methods, Presentation data,			
	Measurement of centraltendency and dispersion, Frequency			
	distribution, Analysis of variance and co-variance.			
	Correlation regression, Theory of probability, Tests of			
	significance, Chi-square test.			
	Measurement of fish:			
	• Measurement of length and weight			
\sim	Morphometric measurements			
	Merestic counts			
Unit IV	Biology of the ocean	15		
	biology of the ocean	I octuros		
	Endogenous rhythms : biological clocks lunar periodicity			
	and tidal rhythms			
	Sonso Organs: types of organs and their functions	-		
	Consecution of reproduction in marine experience	4		
	General account of reproduction in marine organisms.	1		

Detailed syllabus

	General account of different types of larvae in Crustacea, Mollusca, Echinodermata and Teleost					
RPSZOGP404	PROJECT	Credits 2				
 Research project will be executed; results tabulated & analyzed using appropriate statistical tools. The research project will be submitted in the form of dissertation at the time of practical examination. 						

REFERENCES:

- 1. Kurian and Sebastian, Prawn and prawn fisheries of India.
- 2. M. Krishna Pillai. Introduction to Planktology, Himalaya Publishing
- 3. A.A. Fincham. Basic marine biology, British Museum Natural History.
- 4. Latha Shenoy. Course manual in fishing technology, CIFE, Versova, Mumbai.
- 5. Jefferey F. Raymond, Plankton and productivity, Vol. I and II.
- 6. J.S.Levington, Marine Biology, Function, biodiversity, ecology. Oxford University Press.
- 7. Wealth of India, Vol. IV, CSIR Publications.
- 8. S.P. Biswas, Manual of methods in fish biology, South Asian publishers private Ltd., New Delhi.
- 9. J.P. Rilcy and R, Chester, Introduction to marine chemistry, Academic Press, London and New Delhi.
- 10. American Public Health Association-2000.
- 11. J.V.R. Pillai, Aquaculture principles and plasia, Blackwell Scientific pub.
- 12. Das P. and JhingranA.C.G., Fish genetics in India.
- 13. Colin E. Purdon, Genetics and Fish breeding, Chapman and Hall.
- 14. Schroder J.J., Genetics and Mutagenesis of fish, Chapman and Hall.
- 15. P. Bensam. Development of marine fishery sciences in India, Daya publishing House.

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr. No.	Evaluation type	Marks	
1.	Two Assignments/Case study/Project/Research paper review	20	
2.	One class Test (multiple choice objective question)	20	

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **2hours 30 mins** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Questions	Options	Marks	Questions on
Q.1	Any 1 out of 2	12	Unit- I
Q.2	Any 1 out of 2	12	Unit- II
Q.3	Any 1 out of 2	12	Unit- III
Q.4	Any 1 out of 2	12	Unit- IV
Q.5	3 short notes out of 5	12	All Units

Practical Examination Pattern:

C) External Examination: 50 Marks

Particulars	Marks
Journal	05
Experimental tasks/ Viva	45
Total	50

D) Modality for Project

Abstract	04				
Material methods	04				
Procedure followed	04				
Observation	04				
Interpretation of results	06				
Conclusion and discussion	08				
Bibliography	04				
Viva voce base on the project	08				
Power point presentation	08				
Total- 50 Marks					

Course	RPSZOO40	RPSZOO402		RPSZOG403		RPSZOG404		Grand Total	
	Internal	External	Internal	External	Internal	External	Internal	External	0,5
Theory	40	60	40	60	40	60	40	60	400
Practical's	5	0	5	0		50		50	200
							JUS		

Overall Examination & Marks Distribution Pattern Semester-IV