S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: B.Sc.

Program Code: (STATISTICS) RUSSTA

(Choice Based Credit System for the academic year 2022–2023)

PROGRAM OUTCOMES

S. P. Mandali's Ramnarain Ruia Autonomous College has adopted the Outcome Based Education model to make its science graduates globally competent and capable of advancing in their careers. The Bachelors Program in Science also encourages students to reflect on the broader purpose of their education.

РО	PO Description					
	A student completing Bachelor's Degree in Science program will be able to:					
PO 1	Recall and explain acquired scientific knowledge in a comprehensive manner and					
	apply the skills acquired in their chosen discipline. Interpret scientific ideas and					
	relate its interconnectedness to various fields in science.					
PO 2	Evaluate scientific ideas critically, analyse problems, explore options for practical					
	demonstrations, illustrate work plans and execute them, organise data and draw					
	inferences.					
PO 3	Explore and evaluate digital information and use it for knowledge upgradation.					
	Apply relevant information so gathered for analysis and communication using					
	appropriate digital tools.					
PO 4	Ask relevant questions, understand scientific relevance, hypothesize a scientific					
	problem, construct and execute a project plan and analyse results.					
PO 5	Take complex challenges, work responsibly and independently, as well as in					
	cohesion with a team for completion of a task. Communicate effectively,					
	convincingly and in an articulate manner.					
PO 6	Apply scientific information with sensitivity to values of different cultural groups.					
	Disseminate scientific knowledge effectively for upliftment of the society.					
PO 7	Follow ethical practices at work place and be unbiased and critical in					
	interpretation of scientific data. Understand the environmental issues and explore					
2	sustainable solutions for it.					
PO 8	Keep abreast with current scientific developments in the specific discipline and					
70	adapt to technological advancements for better application of scientific knowledge					
	as a lifelong learner.					

PROGRAM SPECIFIC OUTCOMES

PSO	Description
	A student completing Bachelor's Degree in Science program in the
	subject of Statistics will be able to:
PSO 1	Understand, condense, visualize, analyze and interpret the data collected in daily walk of life.
PSO 2	Understand the data generated in various scenarios of scientific, industrial, or social problems.
PSO 3	Pursue their higher education programs leading to post-graduate or doctoral degrees.
PSO 4	Enhance knowledge of Statistical tools.
PSO 5	Enhance the theoretical rigor with technical skills which prepare them to become globally competitive to enter into a promising professional life after graduation.
PSO 6	Make a pathway to a range of traditional avenues in Academia and Industry, Govt. Service, IAS, Indian Statistical/ Economic Services, Industries, Commerce, Investment Banking, Banks and Insurance Sectors, CSO and NSSO, Research Personnel/Investigator in Govt. organizations such as NCAER, IAMR, ICMR, Statistical and Economic Bureau & various PSUs., Market Research, Actuarial Sciences, Biostatistics, Demography etc.
PSO 7	Seek employment in different sectors like Stock trading, Sports, Politics, Business, Financial services and Media Industry.

PROGRAM OUTLINE

CODE FYBSc I RUSSTA101 DESCRI		
EVESC DIISSTA101 DESCOI		
TIPOU TI NOSSIAIUI DESCRI	PTIVE STATISTICS - I	2
(CORE		4
COURSE)		OX
FYBSc I RUSSTA102 STATIS	STICAL METHODS - I	2
(CORE	(0)	
COURSE)		
FYBSc I RUSSTAP101 Practical b	pased on RUSSTA101 &	2
(CORE	RUSSTA102	
COURSE)		
FYBSc II RUSSTA201 DESCRII	PTIVE STATISTICS - II	2
(CORE	~0,	
COURSE)		
FYBSc II RUSSTA202 STATIS	TICAL METHODS – II	2
(CORE		
COURSE)		
FYBSc II RUSSTAP201 Practical b	pased on RUSSTA201 &	2
(CORE	RUSSTA202	
COURSE)		
SYBSc III RUSSTA301 PROBAB	ILITY DISTRIBUTIONS	2
SYBSc III RUSSTA302 THEC	ORY OF SAMPLING	2
SYBSc III RUSSTA303 OPERA	ATIONS RESEARCH	2
SYBSc III RUSSTAP301 Practical	based on RUSSTA301,	3
RUSST	A302 & RUSSTA303	
SYBSc IV RUSSTA401 PROBAB	ILITY AND SAMPLING	2
D	ISTRIBUTIONS	
SYBSc IV RUSSTA402 ANALYSIS	OF VARIANCE & DESIGN	2
OF	EXPERIMENTS	
SYBSc IV RUSSTA403 PROJECT	T MANAGEMENT AND	2
INDUS	STRIAL STATISTICS	
SYBSc IV RUSSTAP401 Practical	based on RUSSTA401,	3

			RUSSTA402 and RUSSTA403	
TYBSc	V	RUSSTA501	PROBABILITYAND	2.5
			DISTRIBUTIONTHEORY	
TYBSc	V	RUSSTA502	THEORY OF ESTIMATION	2.5
TYBSc	V	RUSSTAP501	Practical based on RUSSTA501 &	3
			RUSSTA502	Ó
TYBSc	V	RUSSTA503	BIOSTATISTICS	2.5
TYBSc	V	RUSSTA504	ELEMENTS OF ACTUARIAL	2.5
			SCIENCE	O .
TYBSc	V	RUSSTAP502	Practical based on RUSSTA503 &	3
			RUSSTA504	
TYBSc	VI	RUSSTA601	DISTRIBUTIONTHEORY AND	2.5
			STOCHASTIC PROCESSES	
TYBSc	VI	RUSSTA602	TESTING OF HYPOTHESES	2.5
TYBSc	VI	RUSSTAP601	Practical based on RUSSTA601 &	3
			RUSSTA602	
TYBSc	VI	RUSSTA603	APPLIED STATISTICS-I	2.5
TYBSc	VI	RUSSTA604	APPLIED STATISTICS-II	2.5
TYBSc	VI	RUSSTAP602	Practical based on RUSSTA603 &	3
			RUSSTA604	

CORE COURSE

Course Code: RUSSTA101

Course Title: DESCRIPTIVE STATISTICS - I

Academic year 2022-23

COURSE OUTCOMES:

COURSE	DESCRIPTION		
OUTCOME	A student completing this course will be able to:		
CO 1	Distinguish between different types of scales. Compare the different types of data and describe the various methods of data collection.		
CO 2	Compute Yule's coefficient of association Q and Yule's coefficient of		

	Colligation Y and associate two attributes, and relate Q and Y.
CO 3	Construct Univariate and Bivariate frequency distribution of discrete, continuous variables and Cumulative frequency distribution. Draw Graphs and Diagrams: Histogram, Polygon/curve, Ogives. Heat Map, Tree map.
CO 4	Describe the need of measures of central tendency, Explain the various measures of central tendencies. Relate mean, median and mode. Justify merits and demerits of using different measures.
CO 5	Compute and comprehend the measures of dispersion. Compare Absolute and Relative measures of dispersion.
CO 6	Relate raw moments and central moments. Understand Skewness and Kurtosis of data. Identify the outliers.

		data. Identity the outliers.	
		DETAILED SYLLABUS	
Course	Unit	Course/ Unit Title	Credits/
Code/ Uni	it		Lectures
RUSSTA10)1 Unit I	Types of Data and Data Condensation:	15
		 Global Success stories of Statistics/Analytics in various fields. Concept of Population and Sample. Finite, Infinite Population, Notion of SRS, SRSWOR and SRSWR Different types of scales: Nominal, Ordinal, Interval and Ratio. Methods of Data Collection: i) Primary data: concept of a Questionnaire and a Schedule, ii) Secondary Data Types of data: Qualitative and Quantitative Data; Time Series Data and Cross Section Data, Discrete and Continuous Data Univariate frequency distribution of discrete and continuous variables. Cumulative frequency distribution Data Visualization: Graphs and Diagrams: Histogram, Polygon/curve, Ogives. Heat Map, Tree map. Bivariate Frequency Distribution of discrete and continuous variables 	Lectures
RUSSTA10	01 Unit	Measures of central tendency	15
	II	 Concept of central tendency of data, Requirements of good measures of central tendency. 	Lectures

		Lagation management Madian Overtiles
		 Location parameters: Median, Quartiles, Deciles, and Percentiles
		Mathematical averages Arithmetic mean
		(Simple, weighted mean, combined mean),
		Geometric mean, Harmonic mean, Mode,
		Trimmed mean.
		Empirical relation between mean, median and
		mode.
		Merits and demerits of using different
		measures & their applicability.
RUSSTA101	Unit	Measures of Dispersion, Skewness & Kurtosis 15
RUSSIAIUI		
	III	Concept of dispersion, Requirements of good Lectures
		measure
		Absolute and Relative measures of dispersion:
		Range, Quartile Deviation, Inter Quartile
		Range, Mean absolute deviation, Standard
		deviation.
		Variance and Combined variance, raw
		moments and central moments and relations
		between them. Their properties
		Concept of Skewness and Kurtosis: Measures
		of Skewness: Karl Pearson's, Bowley's and
		Coefficient of skewness based on moments.
		Measure of Kurtosis. Absolute and relative
		measures of skewness.
		Box Plot: Outliers

Course Code RUSSTAP101(A)			
Sr. No.	Practical based on course		
1	Classification of Data		
2	Diagrammatic representation		
3	Measures of central tendency-1		
4	Measures of central tendency-2		
5	Measures of dispersion		
6	Moments, Skewness and Kurtosis		
7	Practical using Excel		
	i) Classification of Data		
	ii) Diagrammatic representation		
	iii) Measures of central tendency		
	iv) Measures of dispersion		

CORE COURSE

Course Code: RUSSTA102

Course Title: STATISTICAL METHODS-I

Academic year 2022-23

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Differentiate between random and non-random experiments
CO 2	Compute the probabilities of events
CO 3	Understand the concept of a random variable, its probability distribution of a random variable (one or two) and its properties
CO 4	Apply standard discrete probability distributions based on real life situations

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures
RUSSTA102	Unit I	Elementary Probability Theory	15
	910	 Trial, random experiment, sample point and sample space. Definition of an event, Operation of events, mutually exclusive and exhaustive events. Classical (Mathematical) and Empirical definitions of Probability and their properties. Theorems on Addition and Multiplication of probabilities Independence of events, Pair-wise and Mutual Independence for three events, Conditional probability, Bayes' theorem and its applications 	Lectures
RUSSTA102	Unit II	Discrete random variable	15
		 Random variable. Definition and properties of probability distribution and cumulative distribution function of discrete random variable. Raw and Central moments and their relationships. 	Lectures

RUSSTA102	Unit	 Concepts of Skewness and Kurtosis and their uses. Expectation of a random variable. Theorems on Expectation & Variance. Joint probability mass function of two discrete random variables. Independence of two random variables. Marginal and conditional distributions. Theorems on Expectation &Variance, Covariance and Coefficient of Correlation. Some Standard Discrete Distributions 	15
	III	 Degenerate (one point): Discrete Uniform, Bernoulli, Binomial, Poisson and Hypergeometric distributions derivation of their mean and variance for all the above distributions. Recurrence relationship for probabilities of Binomial and Poisson distributions, Poisson approximation to Binomial distribution, Binomial approximation to hypergeometric distribution. 	

	Course Code RUSSTAP101(B)					
Sr. No.	Practicals based on course					
1	Probability					
2	Discrete Random Variables					
3	Bivariate Probability Distributions					
4	Binomial Distribution					
5	Poisson Distribution					
6	Hypergeometric Distribution					
7	Practical using Excel					
	i) Binomial distribution					
	ii) Poisson distribution					
	iii) Hypergeometric distribution					

References:

- 1. Medhi J.: "Statistical Methods, An Introductory Text", Second Edition, New Age International Ltd.
 - 2. Agarwal B.L.: "Basic Statistics", New Age International Ltd.
- 3. Spiegel M.R.: "Theory and Problems of Statistics", Schaum's Publications series. Tata McGraw-Hill.
- 4. Kothari C.R.: "Research Methodology", Wiley Eastern Limited.
- 5. David S.: "Elementary Probability", Cambridge University Press.
- 6. Hoel P.G.: "Introduction to Mathematical Statistics", Asia Publishing House.

- 7. Hogg R.V. and Tannis E.P.: "Probability and Statistical Inference". McMillan Publishing Co. Inc.
- 8. Pitan Jim: "Probability", Narosa Publishing House.
- 9. Goon A.M., Gupta M.K., Dasgupta B.: "Fundamentals of Statistics", Volume II: The World Press Private Limited, Calcutta.
- 10. Gupta S.C., Kapoor V.K.: "Fundamentals of Mathematical Statistics", Sultan Chand &Sons
- 11. Gupta S.C., Kapoor V.K.: "Fundamentals of Applied Statistics", Sultan Chand & Sons

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	Class Test/ Project / Assignment / Presentation	20
2	Class Test/ Project / Assignment / Presentation	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of two hours duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
1	Any 2 out of 3 subparts	20	Unit I
2	Any 2 out of 3 subparts	20	Unit II
3	Any 2 out of 3 subparts	20	Unit III
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Marks
Journal and attendance	5
Assignments using Statistical Software	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Duration - These examinations shall be of one and half hour duration.

Particulars	Paper
Exam (There shall be Three COMPULSORY Questions of 10 marks each with internal choice)	30
Total	30

Overall Examination & Marks Distribution Pattern Semester I

Course	RUSSTA101			rse RUSSTA101 RUSSTA102			Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical	20	30	50	20	30	50	100

CORE COURSE

Course Code: RUSSTA201
Course Title: DESCRIPTIVE STATISTICS - II

Academic year 2022-23

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Compute the numerical measures to identify the direction and strength of linear relationship between two variables using. Also, list their properties.
CO 2	Build a simple linear regression model and interpret regression coefficients and coefficient of determination.
CO 3	Calculate and interpret various measures of associations between two attributes.
CO 4	Identify various components of time series. Apply the appropriate methods to evaluate and eliminate these components.
CO 5	Comprehend the concept and construct various index numbers.
CO 6	Use the basic mathematical operators in R for different data types. Apply different data management techniques and data visualisation.

Course	Unit	Course/ Unit Title	Credits/
Code / Unit	0.		Lectures
RUSSTA201	UNIT I	 Correlation and Attributes Karl Pearson's Product moment correlation coefficient and its properties. Spearman's Rank correlation. (With and without ties) Tabulation Dichotomous classification- for two and three attributes, Verification for consistency Association of attributes: Yule's coefficient of association Q. Yule's coefficient of Colligation Y, Relation between Q and Y 	15 LECTURES
		(with proof).Measures of association with the help of	

		Tau A, Tau B, Tau C, Gamma and Lambda, Somer's d	
RUSSTA201	Unit II	Simple linear Regression Analysis and Fitting of curves	15 LECTURES
		 Concept of Simple linear regression. Principle of least squares. Fitting a straight line by method of least squares (Linear in Parameters) Relationship between regression coefficients and correlation coefficient, cause and effect relationship, Spurious correlation. Concept and use of coefficient of determination (R²). Fitting of curves reducible to linear form by transformation. 	
RUSSTA201	UNIT	Time Series and Index numbers	15
		 Definition of time series. Components of time series. Models of time series. Estimation of trend by: (i) Freehand Curve Method (ii) Method of Semi Average (iii) Method of Moving Average (iv) Method of Least Squares (Linear Trend only) Estimation of seasonal component by (i) Method of Simple Average (ii) Ratio to Moving Average (iii) Ratio to Trend Method Simple exponential smoothing Stationary Time series Index numbers: Index numbers as comparative tool. Stages in the construction of Price Index Numbers. Measures of Simple and Composite Index Numbers. Laspeyre's, Paasche's, Marshal-Edgeworth's, Dobisch & Bowley's and Fisher's Index Numbers formula Quantity Index Numbers and Value Index Numbers Time reversal test, Factor reversal test, Circular test Fixed base Index Numbers, Chain base Index Numbers. Base shifting, splicing and deflating. Cost of Living Index Number. Concept of Real Income. 	LECTURES

	Course Code RUSSTAP201(A)					
Sr. No.	Practical based on course					
1	Correlation analysis					
2	Tabulation	1/60				
3	Measures of Association					
4	Regression analysis	(0)				
5	Fitting of curve					
6	Time series	,5				
7	Index Numbers.					
8	Practical using Excel					
	i) Correlation analysis	iv) Moving Averages				
	ii) Regression analysis	v) Exponential Smoothing				
	iii) Fitting of curve					

CORE COURSE

Course Code: RUSSTA202
Course Title: STATISTICAL METHODS - II

Academic year 2022-23

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Obtain a probability density function and cumulative distribution function
	for continuous random variable
CO 2	Apply standard continuous probability distributions to different situations
CO 3	Distinguish between point estimation and interval estimation
CO 4	Define the various terminologies of testing of hypotheses and apply large sample tests

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures

RUSSTA202	UNIT	Continuous random variable and some Standard	15
NU331AZUZ	UNIT	Continuous Distributions	
	•		Lectures
		 Concept of Continuous random variable and properties of its probability distribution 	
		Probability density function and cumulative	
		distribution function.	
		Their graphical representation.	
		 Expectation of a random variable and its properties. 	~ <
		Measures of location, dispersion, skewness and	
		kurtosis.	(0,0
		 Raw and central moments (simple illustrations). 	
		 Uniform, Exponential distribution (location and scale) 	
		parameter), memory less property of exponential	
		distribution, Derivations of mean, median, variance,	
		5	
RUSSTA202	UNIT	Normal Distribution and Sampling Distribution	15
	II	Normal distribution	Lectures
		 Properties of Normal distribution/curve (without 	
		proof). Use of normal tables.	
		Normal approximation to Binomial and Poisson	
		distribution (statement only)	
		Sample from a distribution: Concept of a statistic,	
		estimate and its sampling distribution. Parameter, its	
		estimator and bias, unbiasedness, standard error of an estimator.	
		 Concept of Central Limit theorem (statement only) Sampling distribution of sample means and sample 	
		Sampling distribution of sample means and sample proportion difference between two population	
		means and two proportions.	
		Standard errors of sample mean and sample	
		proportion.	
RUSSTA202	UNIT	Basics of Theory of Estimation and Testing of	15
	IIÎ	hypothesis	Lectures
		• Point and Interval estimate of single mean, single	
	T. O	proportion from sample of large size.	
		Statistical tests: Concept of hypothesis, Null and	
	J	Alternative Hypothesis, Types of Errors, Critical	
		region, Level of significance, Power	
		Large sample tests	
		For testing specified value of population mean	
		For testing specified value in difference of two means	
		For testing specified value of population proportion	
		For testing specified value of difference of population	
		proportion	
		Concept of p-value	

Course Code RUSSTAP201(B)				
Sr. No.	Practical based on course			
1	Continuous Random Variabl	es		
2	Uniform and Exponential Dis	stributions		
3	Normal Distribution			
4	Sampling Distribution			
5	Testing of Hypothesis			
6	Large sample Tests			
7	Practical using Excel (i) Binomial and Poisson (iii) Normal Distribution (v) Testing of Hypotheses	(ii) Uniform and Exponential (iv) Sampling Distribution (vi) Large Sample Tests		

REFERENCES:

- 1. Medhi J.: "Statistical Methods, An Introductory Text", Second Edition, New Age International Ltd.
- 2. Agarwal B.L.: "Basic Statistics", New Age International Ltd.
- 3. Spiegel M.R.: "Theory and Problems of Statistics", Schaum's Publications series. Tata McGraw-Hill.
- 4. Kothari C.R.: "Research Methodology", Wiley Eastern Limited.
- 5. David S.: "Elementary Probability", Cambridge University Press.
- 6. Hoel P.G.: "Introduction to Mathematical Statistics", Asia Publishing House.
- 7. Hogg R.V. and Tannis E.P.: "Probability and Statistical Inference". McMillan Publishing Co. Inc.
- 8. Pitan Jim: "Probability", Narosa Publishing House.
- 9. Goon A.M., Gupta M.K., Dasgupta B.: "Fundamentals of Statistics", Volume II: The World Press Private Limited, Calcutta.
- 10. Gupta S.C., Kapoor V.K.: "Fundamentals of Mathematical Statistics", Sultan Chand &Sons
- 11. Gupta S.C., Kapoor V.K.: "Fundamentals of Applied Statistics", Sultan Chand & Sons

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	Class Test/ Project / Assignment / Presentation	20
2	Class Test/ Project / Assignment / Presentation	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
1	Any 2 out of 3 sub-parts	20	Unit I
2	Any 2 out of 3 sub-parts	20	Unit II
3	Any 2 out of 3 sub-parts	20	Unit III
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Marks
Journal and attendance	5
Projects based on primary / secondary data	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Duration - These examinations shall be of **one and half hour** duration.

Particulars	Paper
Exam (There shall be Three COMPULSORY Questions of 10	30
marks each with internal choice)	
Total	30

Overall Examination & Marks Distribution Pattern

Semester II

Course	RUSSTA201			R	USSTA202		Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical	20	30	50	20	30	50	100

S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: B.Sc.

Program Code: (STATISTICS) RUSSTA

(Credit Based Semester and Grading System for the academic year 2022–2023)

Course Code: RUSSTA301 Course Title: PROBABILITY DISTRIBUTIONS

Academic year 2022-23

COURSE OUTCOMES:

COURSE	DESCRIPTION			
OUTCOME	At the end of this course students will be able to			
CO 1	Understand different Standard Discrete Probability Distributions.			
CO 2	Differentiate between the Standard Discrete Probability Distributions, understand their properties.			
CO 3	Solve problems after identifying the underlying distribution.			

Course	Unit	Course/ Unit Title	Credits/		
Code/ Unit		Le			
RUSSTA301	Unit	Univariate Random Variables (Discrete and	15		
	I	Continuous):	Lectures		
		Moment Generating Function, Cumulant			
		generating Function-Their important properties.			
		Relationship between moments and cumulants and their uses.			
		Characteristic Function- Its properties (without)			
		proof).			
		Transformation of random Variable			
RUSSTA301	Unit	Standard Discrete Probability Distributions:	15		
		• Uniform, Bernoulli, Binomial, Poisson, Geometric,	Lectures		
2,0		Negative Binomial & Hypergeometric distributions.			
		The following aspects of the above distributions			
		(wherever applicable) to be discussed:			
		Mean, Mode and Standard deviation. Moment			
		Generating Function, Cumulant			
		 Generating Function, Additive property, 			
		Recurrence relation for central			
		Moments, Skewness and Kurtosis (without proof),			

		Limiting distribution.	
RUSSTA301	Unit	Bivariate Probability Distributions:	15
	Ш	Joint Probability mass function for Discrete	Lectures
		random variables, Joint Probability density function	
		for continuous random variables. Their properties.	
		Marginal and conditional Distributions.	Ó
		Independence of Random Variables. Conditional	10,0
		Expectation & Variance.	
		Regression Function. Coefficient of Correlation.	\mathcal{O}
		Transformation of Random Variables and	,
		Jacobian of transformation with illustrations.	

	Course Code RUSSTAP301(A)			
Sr. No.	Practical based on course			
1	Moment Generating Function, Moments.			
2	Cumulant generating Function, Cumulants, Characteristic function.			
3	Standard Discrete Distributions			
4	Fitting Standard Discrete Distributions.			
5	Bivariate Probability Distributions, Marginal & Conditional distributions, Conditional Mean, Conditional Variance, Correlation			
6	Transformation of discrete & continuous random variables.			

REFERENCES:

- 1. A. M. Mood, F.A. Graybill, D. C. Boyes, Third Edition; McGraw-Hill Book Company. Introduction to the theory of statistics
- 2. R.V. Hogg, A.T. Craig; Fourth Edition; Collier McMillan Publishers: Introduction to Mathematical Statistics
- 3. R.V. Hogg, E. A. Tannis, Third Edition; Collier McMillan Publishers: Probability and Statistical Inference

- 4. I. Miller, M. Miller; Sixth Edition; Pearson Education Inc.: John E. Freund's Mathematical Statistics
- 5. P.G. Hoel; Fourth Edition; John Wiley & Sons Inc.: Introduction to Mathematical Statistics
- S.C. Gupta, V.K. Kapoor; Eighth Edition; Sultan Chand & Sons.: Fundamentals of Mathematical Statistics
- 7. J.N. Kapur, H.C. Saxena; Fifteenth Edition; S. Chand & Company Ltd.: Mathematical Statistics
- 8. J. Medhi; Second edition; Wiley Eastern Ltd.: Statistical Methods: An Introductory Text
- 9. A.M. Goon, M.K. Gupta, B. DasGupta; Third Edition; The World Press Pvt. Ltd.: An Outline of Statistical Theory Vol. 1

Course Code: RUSSTA302

Course Title: THEORY OF SAMPLING

Academic year 2022-23

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION A student completing this course will be able to:		
CO 1	Understand the need of sampling and define the principal concepts in sampling		
CO 2	Formulate and calculate estimates of population parameters for Simple Random Sampling, Stratified Sampling and Systematic sampling		
CO 3	Contrast types of probability sampling		
CO 4	Utilize auxiliary information in survey by means of Ratio and Regression method of estimation		

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures

RUSSTA302	Unit	Concepts:			
	I	 Population, Population unit, Sample, Sample unit, 	Lectures		
		Parameter, Statistic, Estimator, Bias,			
		Unbiasedness, Mean square error & Standard			
		error.			
		Census survey, Sample Survey. Steps in			
		conducting a sample survey. Concepts of Sampling	4		
		and Non-sampling errors.			
		 Concepts and methods of Probability and Non- 	160		
		Probability sampling.			
		Simple Random Sampling (SRS):) `		
		Description of Simple Random Sampling with &			
		without replacement.			
		Lottery method & use of Random numbers to select Simple random sample			
		Simple random sample.			
		 Estimation of population mean & total. Expectation & Variance of the estimators, Unbiased estimator of 			
		variance of these estimators.			
		 Estimation of population proportion. Expectation & 			
		Variance of the estimators,			
		 Unbiased estimator of variance of these estimators. 			
		Estimation of Sample size based on a desired			
		accuracy in case of SRS for variables & attributes.			
RUSSTA302	Unit	Stratified Sampling:	15		
	II	Need for Stratification of population with suitable	Lectures		
		examples. Description of Stratified Random			
		Sample.			
	• 5	 Advantages of stratified random Sampling. 			
		Stratified Random Sampling:			
40		Estimation of population mean & total in case of			
		Stratified Random Sampling (WOR within each			
~0		stratum). Expectation & Variance of the unbiased			
		estimators, Unbiased estimators of variances of these estimators.			
		Equal Allocation, Proportional allocation, Optimum allocation with and without varying costs.			
		allocation with and without varying costs.Comparison of Simple Random Sampling, Stratified			
		Random Sampling using			
		Proportional allocation & Neyman allocation			
RUSSTA302	Unit				
	III	SRSWOR:			
		Ratio Estimators for population Ratio, Mean &			

Total. Expectation & MSE of the Estimators.
•
Estimators of MSE. Uses of Ratio Estimator.
Regression Estimators for population Mean & Total.
Expectation & Variance of the Estimators assuming
known value of regression coefficient 'b'.
Estimation of 'b'. Resulting variance of the
estimators. Uses of regression
Estimator. Comparison of Ratio, Regression &
mean per Unit estimators.
Systematic sampling:
Estimator of Population Mean and its Variance.
Comparison of Systematic Sampling with Simple
Random sampling
Introduction to Cluster sampling & Two Stage
sampling with suitable illustrations.

Course Code RUSSTAP301(B)			
Sr. No.	Practical based on course		
1	Designing of Questionnaire.		
2	Simple Random Sampling for Variables.		
3	Simple Random Sampling for Attributes.		
4	Estimation of Sample Size in Simple Random Sampling.		
5	Stratified Random Sampling.		
6	Ratio Estimation- Regression Estimation.		
7	Systematic Sampling		

REFERENCES:

- 1. W.G. Cochran; 3rd Edition; Wiley (1978): Sampling Techniques
- 2. M. N. Murthy; Statistical Publishing Society. (1967): Sampling Theory and methods
- 3. Des Raj; McGraw Hill Series in Probability and Statistics. (1968): Sampling Theory

- 4. P.V. Sukhatme and B.V. Sukhatme; 3rd Edition; Iowa State University Press (1984): Sampling Theory of Surveys with Applications
- 5. S. C. Gupta and V.K. Kapoor; 3rd Edition; Sultan Chand and Sons (2001): Fundamentals of Applied Statistics
- 6. Daroga Singh, F.S.Chaudhary, Wiley Eastern Ltd. (1986): Theory and Analysis of Sample Survey Designs:
- 7. S. Sampath, Second Edition (2005), Narosa: Sampling Theory and Methods
- 8. Parimal Mukhopadhyay, (1998), Prentice Hall Of India Pvt. Ltd.: Theory and Methods of Survey Sampling

Course Code: RUSSTA303

Course Title: OPERATIONS RESEARCH

Academic year 2022-23

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION A student completing this course will be able to:
CO 1	Formulate and solve a linear programming problem graphically and using simplex method.
CO 2	Obtain dual of a given problem and solve the primal from the optimum solution of a primal.
CO 3	Solve a transportation problem and its variants using various methods and optimise it.
CO 4	Solve an assignment problem and its variants using Hungarian methods.
CO 5	Process sequencing problems using Johnson's Method

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures
RUSSTA303	Unit	Linear Programming Problem (L.P.P.):	15
	I	• Mathematical Formulation: Maximization &	Lectures

		Minimization. Concepts of Solution, Feasible Solution, Basic Feasible Solution, Optimal	
		 solution. Graphical Solution for problems with two variables. Simplex method of solving problems 	
		with two or more variables. Big M method.	
		• Concept of Duality. Its use in solving L.P.P. Relationship between optimum solutions to	(0)
		Primal and Dual. Economic interpretation of Dual.	116,6
RUSSTA303	Unit	Transportation Problem:	15
	II	Concept, Mathematical Formulation. Concepts	
		of Solution, Feasible Solution, Initial Basic	,
		Feasible Solution by North-West Corner Rule,	
		Matrix Minima Method, Vogel's Approximation	
		Method. Optimal Solution by MODI Method.	
		Optimality test, Improvement procedure.	
		• Variants in Transportation Problem:	
		Unbalanced, Maximization type, Restricted	
		allocations.	
RUSSTA303	Unit	Assignment Problem:	15
	III	Concept. Mathematical Formulation	Lectures
		Solution by: Complete Enumeration Method and	
		Hungarian method.	
		Variants in Assignment Problem: Unbalanced,	
		Maximization type.	
	4	Airline Operating Problem	
	Ì	Travelling Salesman Problem	
		Sequencing:	
		• Processing n Jobs through 2 and 3 Machines, 2	
	9),	Jobs through m Machines and n jobs through m	
		machines	

Course Code RUSSTAP301(C)		
Sr. No.	Practical based on course	
1	Formulation and Graphical Solution of L.P.P.	

2	Simplex Method.
3	Duality.
4	Transportation.
5	Assignment.
6	Sequencing.
7	Problems solving using TORA / EXCEL Solver.

REFERENCES:

- 1. Kantiswaroop and Manmohan Gupta. 4th Edition; S Chand & Sons: Operations Research
- 2. Richard Broson. 2nd edition Tata Mcgraw Hill Publishing Company Ltd.: Schaum Series book in O.R.
- 3. Methods and Problems: Maurice Sasieni, Arthur Yaspan and Lawrence Friedman, (1959), John Wiley & Sons: Operations Research
- 4. J K Sharma, (1989), Tata McGraw Hill Publishing Company Ltd.: Mathematical Models in Operations Research
- 5. Harvey M. Wagner, 2nd Edition, Prentice Hall of India Ltd.: Principles of Operations Research with Applications to Management Decisions
- 6. S.D.Sharma.11th edition, Kedar Nath Ram Nath & Company.: Operations Research
- 7. H. A. Taha. 6th edition, Prentice Hall of India.: Operations Research
- 8. J.K.Sharma, (2001), MacMillan India Ltd.: Quantitative Techniques For Managerial Decisions

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
10	Class Test/ Project / Assignment / Presentation	20
2	Class Test/ Project / Assignment / Presentation	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
1	Any 2 out of 3 sub-parts	20	Unit I
2	Any 2 out of 3 sub-parts	20	Unit II
3	Any 2 out of 3 sub-parts	20	Unit III
	TOTAL	60	(0)

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Marks
Journal and attendance	5
Assignments using Statistical Software	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Duration - These examinations shall be of one and half hour duration.

Particulars	Paper
Exam (There shall be Three COMPULSORY Questions of 10 marks	30
each with internal choice)	
Total	30

Overall Examination & Marks Distribution Pattern Semester III

Course	RUSSTA301	RUSSTA302	RUSSTA303	Grand Total
--------	-----------	-----------	-----------	----------------

	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150

Course Code: RUSSTA401

Course Title: PROBABILITY AND SAMPLING DISTRIBUTIONS

Academic year 2022-23

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Understand different Standard Continuous Probability Distributions.
CO 2	Differentiate between the Standard Continuous Probability Distributions, understand their properties and solve problems based on these distributions.
CO 3	Apply Standard Continuous Probability Distributions in real life examples.

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures
RUSSTA401	Unit	Standard Continuous Probability Distributions:	15
Silling		 Rectangular, Triangular, Exponential, Gamma (with Single & Double parameter), Beta (Type I & Type II). The following aspects of the above distributions (wherever applicable) to be discussed Mean, Median, Mode & Standard deviation. Moment Generating Function, Additive property, Cumulant Generating Function. Skewness and Kurtosis (without proof). Interrelation between the distributions. Normal Distribution: Mean, Median, Mode, Standard deviation, Moment Generating function, Cumulant Generating function, Moments & Cumulants (up to fourth order). Recurrence relation for central moments, skewness & kurtosis, Mean absolute deviation. Distribution of linear function of 	Lectures

	1		
		independent Normal variables. Fitting of Normal Distribution.	
		 Central Limit theorem for i.i.d. random variables. 	
		 Log Normal Distribution: Derivation of mean & 	
		variance.	
RUSSTA401	Unit	Chi-Square Distribution:	15
	II	 Concept of degrees of freedom. Mean, Median, Mode & Standard deviation. Moment generating function, Cumulant generating function. Additive property, Distribution of the sum of squares of independent Standard Normal variables. Sampling distributions of sample mean and sample variance and their independence for a sample drawn from Normal distribution (without proof). Applications of Chi-Square: Test of significance for specified value of variance of a Normal population. Test for goodness of fit & Test for independence of attributes (derivation of test statistics is not expected). 	Lectures
DUIGOTA			45
RUSSTA401	Unit		15
RUSSTA401	Unit III	Mean, Median, Mode & Standard deviation.	15 Lectures
RUSSTA401		Mean, Median, Mode & Standard deviation. Derivation of t distribution using Fisher's t.	_
RUSSTA401		 Mean, Median, Mode & Standard deviation. Derivation of t distribution using Fisher's t. Student's t. Asymptotic properties. 	_
RUSSTA401		 Mean, Median, Mode & Standard deviation. Derivation of t distribution using Fisher's t. Student's t. Asymptotic properties. Applications of t: Confidence interval for: Mean of 	_
RUSSTA401		 Mean, Median, Mode & Standard deviation. Derivation of t distribution using Fisher's t. Student's t. Asymptotic properties. 	_
RUSSTA401		 Mean, Median, Mode & Standard deviation. Derivation of t distribution using Fisher's t. Student's t. Asymptotic properties. Applications of t: Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a 	_
RUSSTA401		 Mean, Median, Mode & Standard deviation. Derivation of t distribution using Fisher's t. Student's t. Asymptotic properties. Applications of t: Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a Normal population, difference in means of two 	_
RUSSTA401		 Mean, Median, Mode & Standard deviation. Derivation of t distribution using Fisher's t. Student's t. Asymptotic properties. Applications of t: Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a Normal population, difference in means of two Normal populations (based on: 	_
RUSSTA401		 Mean, Median, Mode & Standard deviation. Derivation of t distribution using Fisher's t. Student's t. Asymptotic properties. Applications of t: Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a Normal population, difference in means of two Normal populations (based on: independent samples with equal variances. 	_
RUSSTA401		 Mean, Median, Mode & Standard deviation. Derivation of t distribution using Fisher's t. Student's t. Asymptotic properties. Applications of t: Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a Normal population, difference in means of two Normal populations (based on: (i) independent samples with equal variances. (Effect Size, Cohen's d) (ii) dependent samples). 	_
RUSSTA401		 Mean, Median, Mode & Standard deviation. Derivation of t distribution using Fisher's t. Student's t. Asymptotic properties. Applications of t: Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a Normal population, difference in means of two Normal populations (based on: (i) independent samples with equal variances. (Effect Size, Cohen's d) (ii) dependent samples). F-distribution: Mean, Mode & Standard 	_
RUSSTA401		 Mean, Median, Mode & Standard deviation. Derivation of t distribution using Fisher's t. Student's t. Asymptotic properties. Applications of t: Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a Normal population, difference in means of two Normal populations (based on: (i) independent samples with equal variances. (Effect Size, Cohen's d) (ii) dependent samples). F-distribution: Mean, Mode & Standard deviation. Distribution of: reciprocal of an F variate, 	_
RUSSTA401		 Mean, Median, Mode & Standard deviation. Derivation of t distribution using Fisher's t. Student's t. Asymptotic properties. Applications of t: Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a Normal population, difference in means of two Normal populations (based on: (i) independent samples with equal variances. (Effect Size, Cohen's d) (ii) dependent samples). F-distribution: Mean, Mode & Standard deviation. Distribution of: reciprocal of an F variate, Ratio of two independent Chi-squares divided by 	_
RUSSTA401		 Mean, Median, Mode & Standard deviation. Derivation of t distribution using Fisher's t. Student's t. Asymptotic properties. Applications of t: Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a Normal population, difference in means of two Normal populations (based on: (i) independent samples with equal variances. (Effect Size, Cohen's d) (ii) dependent samples). F-distribution: Mean, Mode & Standard deviation. Distribution of: reciprocal of an F variate, Ratio of two independent Chi-squares divided by their respective degrees of freedom. 	_
RUSSTA401		 Mean, Median, Mode & Standard deviation. Derivation of t distribution using Fisher's t. Student's t. Asymptotic properties. Applications of t: Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a Normal population, difference in means of two Normal populations (based on: (i) independent samples with equal variances. (Effect Size, Cohen's d) (ii) dependent samples). F-distribution: Mean, Mode & Standard deviation. Distribution of: reciprocal of an F variate, Ratio of two independent Chi-squares divided by 	_
RUSSTA401		 Mean, Median, Mode & Standard deviation. Derivation of t distribution using Fisher's t. Student's t. Asymptotic properties. Applications of t: Confidence interval for: Mean of Normal population, difference between means of two independent Normal populations having the same variance. Test of significance of: mean of a Normal population, difference in means of two Normal populations (based on: (i) independent samples with equal variances. (Effect Size, Cohen's d) (ii) dependent samples). F-distribution: Mean, Mode & Standard deviation. Distribution of: reciprocal of an F variate, Ratio of two independent Chi-squares divided by their respective degrees of freedom. Interrelationship of F with: t-distribution, Chi-square 	_

Course Code: RUSSTAP401(A)				
Sr. No.	Practical based on course			

1	Standard Continuous distributions.
2	Normal Distribution
3	Central Limit Theorem
4	Chi Square distribution
5	t distribution
6	F distribution
7	Practical using Excel

REFERENCES:

- 1. A M Mood, F.A. Graybill, D C Boyes; Third Edition; McGraw-Hill Book Company.: Introduction to the theory of statistics
- 2. R.V.Hogg, A.T. Craig; Fourth Edition; Collier McMillan Publishers.: Introduction to Mathematical Statistics
- 3. R.V.Hogg, E. A.Tannis, Third Edition; Collier McMillan Publishers.: Probability and Statistical Inference
- 4. I. Miller, M. Miller; Sixth Edition; Pearson Education Inc.: John E. Freund's Mathematical Statistics
- 5. P.G. Hoel; Fourth Edition; John Wiley & Sons Inc.: Introduction to Mathematical Statistics
- 6. S.C. Gupta, V.K. Kapoor; Eighth Edition; Sultan Chand & Sons.: Fundamentals of Mathematical Statistics
- 7. J.N. Kapur, H.C. Saxena; Fifteenth Edition; S. Chand & Company Ltd.: Mathematical Statistics
- 8. J. Medhi; Second edition; Wiley Eastern Ltd.: Statistical Methods- An Introductory Text
- 9. A.M. Goon, M.K. Gupta, B. DasGupta; Third Edition; The World Press Pvt. Ltd.: An Outline of Statistical Theory Vol. 1

Course Code: RUSSTA402

Course Title: ANALYSIS OF VARIANCE & DESIGNS OF EXPERIMENTS

Academic year 2022-23

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Demonstrate analysis of one-way and two-way classification
CO 2	Explain the different components of ANOVA Table
CO 3	Define fundamental concepts in Designs of Experiment, describe the principles of designs of experiment and list the different types of experimental designs
CO 4	Analyse CRD, RBD and LSD using ANOVA
CO 5	Construct factorial experiments, analyse them and understand the concept of confounding

Course	Unit	Course/ Unit Title	Credits/
	OIIII	Course/ Out Title	
Code/ Unit		V ()	Lectures
RUSSTA402	Unit	Analysis of Variance:	15
		 Introduction, Uses, Cochran's Theorem (Statement only). One-way classification with equal & unequal observations per class, Two-way classification with one observation per cell. For both the cases: Mathematical Model, Assumptions, Expectation of various sums of squares, F- test, Analysis of variance table. Least square estimators of the parameters, Expectation and Variance of the estimators, Estimation of linear contrasts, Standard Error and Confidence limits Testing for significance of elementary linear contrasts. 	Lectures
RUSSTA402	Unit	Design Of Experiments:	15
	II	• Concepts of Experiments, Experimental unit,	Lectures
		Treatment, Yield, Block, Replicate, Experimental	
		Error, Precision.	
		 Principles of Design of Experiments: Replication, 	
		Randomization & Local Control.	

 Efficiency of design D₁ with respect to design D₂. 	
Choice of size, shape of plots & blocks in	
agricultural & non-agricultural experiments.	
Completely Randomized Design (CRD) &	
Randomized Block Design (RBD):	
Mathematical Model, Assumptions, Expectation of	
various sums of squares, F-test, Analysis of	_ (
variance table.	
Least square estimators of the parameters,	.10,4
Variance of the estimators, Estimation of linear	
contrasts, Standard Error and Confidence limits	
Testing for significance of elementary linear	
contrasts. Efficiency of RBD relative to CRD.	
Missing plot technique for one missing observation	
in case of CRD, RBD	
RUSSTA402 Unit Latin Square Design (LSD):	15
RUSSTA402 Unit Latin Square Design (LSD): • Mathematical Model, Assumptions, Expectation of	15 Lectures
• Mathematical Model, Assumptions, Expectation of	_
	_
Mathematical Model, Assumptions, Expectation of various sums of squares, F-test, Analysis of variance table.	_
 Mathematical Model, Assumptions, Expectation of various sums of squares, F-test, Analysis of variance table. Least square estimators of the parameters, 	_
 Mathematical Model, Assumptions, Expectation of various sums of squares, F-test, Analysis of variance table. Least square estimators of the parameters, Variance of the estimators, Estimation of treatment 	_
 Mathematical Model, Assumptions, Expectation of various sums of squares, F-test, Analysis of variance table. Least square estimators of the parameters, Variance of the estimators, Estimation of treatment contrasts, Standard error and Confidence limits for 	_
 Mathematical Model, Assumptions, Expectation of various sums of squares, F-test, Analysis of variance table. Least square estimators of the parameters, Variance of the estimators, Estimation of treatment contrasts, Standard error and Confidence limits for elementary treatment contrasts. 	_
 Mathematical Model, Assumptions, Expectation of various sums of squares, F-test, Analysis of variance table. Least square estimators of the parameters, Variance of the estimators, Estimation of treatment contrasts, Standard error and Confidence limits for elementary treatment contrasts. Efficiency of the design relative to RBD, CRD. 	_
 Mathematical Model, Assumptions, Expectation of various sums of squares, F-test, Analysis of variance table. Least square estimators of the parameters, Variance of the estimators, Estimation of treatment contrasts, Standard error and Confidence limits for elementary treatment contrasts. Efficiency of the design relative to RBD, CRD. Missing plot technique for one missing observation 	_
 Mathematical Model, Assumptions, Expectation of various sums of squares, F-test, Analysis of variance table. Least square estimators of the parameters, Variance of the estimators, Estimation of treatment contrasts, Standard error and Confidence limits for elementary treatment contrasts. Efficiency of the design relative to RBD, CRD. Missing plot technique for one missing observation in case of LSD. 	_
 Mathematical Model, Assumptions, Expectation of various sums of squares, F-test, Analysis of variance table. Least square estimators of the parameters, Variance of the estimators, Estimation of treatment contrasts, Standard error and Confidence limits for elementary treatment contrasts. Efficiency of the design relative to RBD, CRD. Missing plot technique for one missing observation in case of LSD. Factorial Experiments: Definition, Purpose & 	_
 Mathematical Model, Assumptions, Expectation of various sums of squares, F-test, Analysis of variance table. Least square estimators of the parameters, Variance of the estimators, Estimation of treatment contrasts, Standard error and Confidence limits for elementary treatment contrasts. Efficiency of the design relative to RBD, CRD. Missing plot technique for one missing observation in case of LSD. 	_
 Mathematical Model, Assumptions, Expectation of various sums of squares, F-test, Analysis of variance table. Least square estimators of the parameters, Variance of the estimators, Estimation of treatment contrasts, Standard error and Confidence limits for elementary treatment contrasts. Efficiency of the design relative to RBD, CRD. Missing plot technique for one missing observation in case of LSD. Factorial Experiments: Definition, Purpose & Advantages. 2², 2³ Experiments. 	_

Course Code: RUSSTAP401(B)				
Sr. No.	Practical based on course			

1	Analysis of Variance- One Way
2	Analysis of Variance- Two Way
3	Completely Randomized Design
4	Randomized Block Design
5	Latin Square Design.
6	Missing Observations in CRD, RBD & LSD
7	Factorial Experiments
8	Practical using Excel

REFERENCES:

- 1. W.G. Cochran and G.M.Cox; Second Edition; John Wiley and Sons.: Experimental Designs
- 2. Oscar Kempthorne, John Wiley and Sons.: The Design and Analysis of Experiments
- 3. Douglas C Montgomery; 6th Edition; John Wiley & Sons.: Design and Analysis of Experiments
- 4. M.N.Das and N.C.Giri, 2nd Edition; New Age International (P) Limited; 1986: Design and Analysis of Experiments
- 5. Walter T Federer; Oxford & IBH Publishing Co. Pvt. Ltd.: Experimental Design, Theory and Application
- 6. S.C.Gupta and V.K.Kapoor; 3rd Edition; Sultan Chand and Sons (2001): Fundamentals of Applied Statistics
- 7. B.J. Winer, McGraw Hill Book Company.: Statistical Principles in Experimental Design

Course Code: RUSSTA403

Course Title: PROJECT MANAGEMENT AND INDUSTRIAL STATISTICS

Academic year 2022-23

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Draw project networks for probabilistic and deterministic time estimates to obtain critical path.
CO 2	Crash activities to optimise the project cost and update networks from time to time.
CO 3	Construct various control charts for variables and attributes to obtain standard values for future use.
CO 4	Design a single sampling plan and obtain its various characteristics and understand the concept of Double Sampling Plan

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures
RUSSTA403	Unit	CPM and PERT:	15
	ı	Objective and Outline of the techniques.	Lectures
		Diagrammatic representation of activities in a	
		project: Gantt Chart and Network Diagram.	
		Slack time and Float times. Determination of	
		Critical path. Probability consideration in project	
		scheduling.	
		Project cost analysis.	
	• (Updating.	1
RUSSTA403	Unit	Statistical Quality Control:	15
		Principles of control. Process quality control of	Lectures
		variables. X bar and R, X bar and Sigma Chart and	
20		their uses. Problems involving setting up	
		standards for future use. Introduction to Six sigma	
		limits.	
		Concept of Natural Tolerance Limits, Specification	
		Limits and Detection of shift	1
		Principles of control. Process quality control of	1
		attributes p, c, np charts and their uses. p-chart	
		and c-chart with variable sample size. Problems	,
		involving setting up standards for future use	,
		Acceptance sampling plan	
		Single Sampling Plans (without curtailment).	

		OC function and OC curves. AQL, LTPD, ASN,	
		ATI, AOQ, Consumer's risk, Producer's risk.	
		Double Sampling Plan (Concept only)	
RUSSTA403	Unit	Game Theory and Decision Theory:	15
	Ш	GAME THEORY:	Lectures
		Definitions of Two-person Zero Sum Game,	
		Saddle Point, Value of the Game, Pure and Mixed	4
		strategy. Optimal solution of two-person zero sum	
		games.	16,2
		Dominance property, Derivation of formulae for	
		(2x2) game. Graphical solution of (2xn) and (mx2)	
		games.	
		DECISION THEORY	
		Decision making under uncertainty: Laplace	
		criterion, Maximax (Minimin) criterion, Maximin	
		(Minimax) criterion, Hurwicz α criterion, Minimax	
		Regret criterion.	
		Decision making under risk: Expected Monetary	
		Value criterion, Expected Opportunity Loss	
		criterion, EPPI, EVPI.	
		Decision tree analysis.	

Course Code: RUSSTAP401(C)			
Sr. No.	Practical based on course		
1	PERT		
2	СРМ		
3	Project cost analysis		
4	Updating		
5	Control Charts for attributes and Control Charts for variables		
6	Acceptance Sampling Plans.		
7	Game theory		
8	Decision theory.		
9	Practical using EXCEL and TORA software		

REFERENCES:

1. E.L. Grant. (2nd edition) McGraw Hill, 1988.: Statistical Quality Control

- 2. Duncan. (3rd edition) D. Taraporewala sons & company.: Quality Control and Industrial Statistics
- 3. Bertrand L. Hansen, (1973), Prentice Hall of India Pvt. Ltd.: Quality Control: Theory and Applications
- 4. Douglas Montgomery, Arizona State University. John Wiley & Sons, Inc. (6th Edition): Statistical Quality Control
- 5. Gupta S.C., Kapoor V.K., Fundamentals of Applied Statistics, Sultan Chand &Sons
- Srinath. 2nd edition, East-west press Pvt. Ltd.: PERT and CPM, Principles and Applications
- 7. Kantiswaroop and Manmohan Gupta. 4th Edition; S Chand & Sons.: Operations Research
- 8. Richard Broson. 2nd edition Tata Mcgraw Hill Publishing Company Ltd.: Schaum Series book in O.R.
- 9. Maurice Sasieni, Arthur Yaspan and Lawrence Friedman, (1959), John Wiley & Sons.: Operations Research: Methods and Problems
- 10. J K Sharma, (1989), Tata McGraw Hill Publishing Company Ltd.: Mathematical Models in Operations Research
- 11. S.D. Sharma. 11th edition, Kedar Nath Ram Nath & Company.: Operations Research
- 12. H. A. Taha, 6th edition, Prentice Hall of India.: Operations Research
- 13. J.K.Sharma, (2001), MacMillan India Ltd.: Quantitative Techniques for Managerial Decisions

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	Class Test/ Project / Assignment / Presentation	20
2	Class Test/ Project / Assignment / Presentation	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Ques tion	Options	Marks	Questions Based on
1	Any 2 out of 3 sub-parts	20	Unit I

	TOTAL	60	. (
3	Any 2 out of 3 sub-parts	20	Unit III
2	Any 2 out of 3 sub-parts	20	Unit II

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Marks
Journal and attendance	5
Projects based on primary / secondary data	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Duration - These examinations shall be of one and half hour duration.

Particulars	Paper
Exam (There shall be Three COMPULSORY Questions of 10 marks each with internal choice)	30
Total	30

Overall Examination & Marks Distribution Pattern

Semester IV

Course RUSSTA401				RI	JSSTA402		RI	JSSTA403		Grand Total
2	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150

Course Code: RUSSTA501

Course Title: PROBABILITYAND DISTRIBUTIONTHEORY

COURSE	37 DESCRIPTION
OUTCOME	A student completing this course will be able to:

CO 1	Apply the advanced concepts of Probability theory to various problems
CO 2	Identify Trinomial distribution and derive its joint moment generating function and multinomial distribution
CO 3	Describe bivariate normal distribution and its properties and test the significance of correlation coefficient of bivariate normal distribution
CO 4	Understand the concept of Order Statistics and its applications

CO 4	Understand the concept of Order Statistics and its applications					
Academic year 2022-23 COURSE OUTCOMES: DETAILED SYLLABUS						
Course Code/	Unit	Course/ Unit Title	Credits/			
Unit			Lectures			
RUSSTA501	Unit	PROBABILITY-I:Basic definitions: Random Experiment,	15 Lectures			
		 Outcome, Event, Sample Space, Complementary, Mutually Exclusive, Exhaustive and Equally Likely Events. concept of permutation and combination. Mathematical, Statistical, Axiomatic and Subjective probability. Sub populations and partitions. Derivation of a) A_{r,n}: Number of distinguishable distributions of putting r indistinguishable balls in n cells; b) Number of distinguishable distributions of putting r indistinguishable balls in n cells such that no cell is empty. Ordered samples and runs. Probabilities based on a) Maxwell Boltzmann, Bose Einstein and Fermi Dirac Statistics. Addition Theorem for N events. Theorems on Probability of realization of: (a) At least one (b) Exactly m (c) At least m of N events A₁, A₂, A₃A_N Classical Occupancy Problems, Matching Problems and Guessing Problems 				

RUSSTA501	Unit II	JOINT MOMENT GENERATING FUNCTION, TRINOMIAL AND MULTINOMIAL DISTRIBUTION:	15 Lectures
		 Definition and properties of Moment Generating Function (MGF) of two random variables of discrete and continuous type. Necessary and Sufficient condition for independence of two random variables. 	6
		Concept and definition of Multivariate MGF.	1166
		 Trinomial distribution: Definition of joint probability distribution of (X, Y). Joint moment generating function, moments μ_{rs} where r=0, 1, 2 and s=0, 1, 2. Marginal & Conditional distributions. Their Means & Variances. Correlation coefficient between (X, Y). Distribution of the Sum X+Y. Extension to Multinomial distribution with parameters (n, p₁, p₂ p_{k-1}) where p₁ + p₂ + p_{k-1} + p_k = 1. Expression for joint MGF. Derivation of: joint probability distribution of (X_i, Xj). Conditional probability distribution of X_i given X_j = x_j 	
RUSSTA501	Unit	BIVARIATE NORMAL DISTRIBUTION	15
		 Definition of joint probability distribution (X, Y). Joint Moment Generating function, moments μ_{rs} where r=0, 1, 2 and s=0, 1, 2. Marginal & Conditional distributions. Their Means & Variances. Correlation coefficient between the random variables. Necessary and sufficient condition for the independence of X and Y. Distribution of aX + bY, where 'a' and 'b' are constants. Distribution of sample correlation coefficient when ρ = 0. Testing the significance of a correlation coefficient. Fisher's z – transformation. Tests for i) H₀: ρ = ρ₀ ii) H₀: ρ₁ = ρ₂ Confidence interval for ρ. 	Lectures
RUSSTA501	Unit	ORDER STATISTICS	15
	IV	 Definition of Order Statistics based on a random sample. Derivation of: 	Lectures

 (a) Cumulative distribution function of rth order statistic. (b) Probability density functions of the rth order statistic. (c) Joint Probability density function of the rth and the sth order statistic (r<s)< li=""> (d) Joint Probability density function of all n ordered statistics. Probability density function of Median (in the case of odd sample sizes) and Range for </s)<>	1166
Uniform and Exponential distributions.	

	Course Code: RUSSTAP501(A)
Sr. No.	Practicals based on course
1	Probability-1
2	Probability -2
3	Multinomial Distribution
4	Bivariate Normal Distribution
5	Test for Significance of Correlation Coefficient
6	Order Statistics -1
7	Order Statistics -2

<u>REFERENCES</u>

- 1. Feller W: An introduction to probability theory and it's applications, Volume: 1, Third edition, Wiley Eastern Limited.
- 2. Hogg R V. & Craig Allen T.: Introduction to Mathematical Statistics, Fifth edition, Pearson Education (Singapore) Pvt. Ltd.
- 3. Mood A. M., Graybill F. A., Boes D.C.: Introduction to the theory of statistics, Third edition, Mcgraw- Hill Series.

- 4. Hogg R. V. and Tanis E.A.: Probability and Statistical Inference, Fourth edition, McMillan Publishing Company.
- 5. Gupta S C & Kapoor V K: Fundamentals of Mathematical statistics, Eleventh edition, Sultan Chand & Sons.
- 6. Biswas S.: Topics in Statistical Methodology, First edition, Wiley Eastern Ltd.
- 7. Kapur J. N. & Saxena H. C.: Mathematical Statistics, Fifteenth edition, S. Chand and Company.
- 8. Chandra T. K. & Chatterjee D.: A First Course in Probability, Second Edition, Narosa Publishing House.
- 9. Sheldon M. Ross: Introduction to Probability Models

Course Code: RUSSTA502

Course Title: THEORY OF ESTIMATION

Academic year 2022-23

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION A student completing this course will be able to:
CO 1	Understand the concept of estimation and various properties of a good estimator
CO 2	Apply Cramer Rao inequality to find Minimum Variance Unbiased Estimator
CO 3	Study the various techniques of Estimation
CO 4	Obtain the estimator of a parameter using Bayes' approach
CO 5	Derive Confidence Interval for different parameters
CO 6	Analyse the full rank linear model Y= X β + e, e ~ N(0, σ ²)

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures
RUSSTA502	Unit	POINT ESTIMATION AND PROPERTIES OF	15
	I	ESTIMATOR- I:	Lectures
		Notion of a parameter and parameter space.	

Problem of Estimation,	
Definitions of Statistic, Estimator and Estimate.	
Properties of a good estimator:	
Unbiasedness: Definition of an unbiased	
estimator, biased estimator, positive and negative	
bias, illustrations and examples (these should	
include unbiased and biased estimators for the	20
same parameters). Proofs of the following results	
regarding unbiased estimators.	
(i) Two distinct unbiased estimators of $\varphi(\theta)$ give	
rise to infinitely many unbiased estimators.	
(ii) If T is an unbiased estimator of θ , then $\phi(T)$ is	
unbiased estimator of $\varphi(\theta)$ provided $\varphi(.)$ is a	
linear function.	
Consistency: Consistency: Definition, Proof of the	
following theorem: An estimator is consistent	
if its bias and variance both tend to zero as the	
sample size tends to infinity.	
Sufficiency: Concept and definition of Sufficiency,	
Neymann Factorization Theorem (without proof).	
Exponential family of probability distributions and	
Sufficient statistic.	
Relative efficiency of an estimator. Illustrative	
examples.	
Minimum variance unbiased estimator (MVUE),	
Uniqueness property of MVUE. Fisher information	
function, Statement and proof of Cramer-Rao	
inequality, Cramer–Rao Lower Bound (CRLB),	
Definition of Minimum Variance Bound Unbiased	
Estimator (MVBUE) of $\phi(\theta)$. Definition of Efficient	
estimator using CRLB.	
RUSSTA502 Unit PROPERTIES OF ESTIMATOR- II 15	
II ● Minimum variance unbiased estimator (MVUE), Lectu	es
Uniqueness property of MVUE. Fisher information	
function, Statement and proof of Cramer-Rao	
inequality, Cramer–Rao Lower Bound (CRLB),	
Definition of minimum variance bound unbiased	
estimator (MVBUE) of φ(θ). Definition of Efficient	
estimator using CRLB.	
Method of Maximum Likelihood Estimation	
(M.L.E.), Definition of likelihood as a function of	
unknown parameter, for a random sample from i)	
discrete distribution ii) continuous distribution.	
Distinction between likelihood function and joint	

	p.d.f. / p.m.f.	
	Derivation of Maximum Likelihood Estimator (MLL) for parameters of standard distributions.	
	(M.L.E.) for parameters of standard distributions (case of one and two unknown parameters).	
	Properties of M.L.E(without proof)	
	 Method of Moments, Derivation of moment 	
	estimators for standard distributions (case of one	, C
	and two unknown parameters). Illustrations of	0
	situations where M.L.E. and Moment Estimators	10.0
	are distinct and their comparison using Mean	
	Square Error.	
	 Method of Minimum Chi-square and Modified 	
	Minimum Chi-square.	
Jnit	BAYESIAN ESTIMATION AND CONFIDENCE INTERVAL	15
III	 Bayesian Estimation: Prior distribution, Posterior 	Lectures
	distribution, Loss function, Risk function, Bayes'	
	solution under Squared Error Loss Function	
	(SELF) and Absolute Error Loss function.	
	• Interval Estimation: Concept of Confidence	
	Interval and Confidence Limits. Definition of pivotal	
	quantity and its use in obtaining confidence limits.	
	Derivation of $100(1-\alpha)$ % equal tailed confidence	
	interval for the parameters μ , μ_1 - μ_2 (Population	
	variance(s) known / unknown), σ^2 , σ_1^2/σ_2^2 (Normal distribution). Confidence Intervals based on	
	asymptotic property of M.L.E. Confidence interval	
	for the parameters of Binomial, Poisson and	
	Exponential distribution. Equidistant confidence	
11	interval for θ based on the random sample from	
	Uniform distribution $(0,\theta)$ by using distribution of	
0	M.L.E.	
Jnit	LINEAR MODELS	15
IV	Linear Model $Y_{nX1} = X_{nXp}\beta_{pX1} + e_{nX1}$ where e follows	Lectures
	$N(0, \sigma^2 I)$. Maximum Likelihood and Least square	
	Estimators of β , and σ^2 . Properties of the estimators. Confidence Intervals for β and σ^2 . Testing	
	Significance of the β . Best Linear Unbiased Estimator	
	(BLUE). Gauss -Markoff Theorem for Full rank Model.	
	Properties of the Estimator, Estimation of Linear	
	function of parameters $l'\beta$. Its mean and variance.	
	Confidence Interval and Testing of significance of $l'\beta$	
	<u> </u>	

	Course Code: RUSSTAP501(B)	
Sr. No.	Practicals based on course	
1	MVUE and MVBUE	
2	Method of Estimation -1	
3	Method of Estimation -2	
4	Bayes' Estimation	
5	Confidence Interval	
6	Linear Models	
7	Use of R software	

REFERENCES:

- 1. Hogg R.V., Craig A.T.: Introduction to Mathematical Statistics, Fourth Edition; Collier McMillan Publishers.
- 2. Hogg R.V., Tannis E. A.: Probability and Statistical Inference, Third Edition; Collier McMillan Publishers.
- 3. Rohatgi, V. K, Ehsanes Saleh A.K. Md.: An introduction to Probability Theory and Mathematical Statistics, Second Edition, Wiley series in Probability and Statistics.
- 4. John E. Freund's Mathematical Statistics: I. Miller, M. Miller; Sixth Edition; Pearson Education Inc.
- 5. Hoe IP.G.: Introduction to Mathematical Statistics; Fourth Edition; John Wiley & Sons Inc.
- 6. Gupta S.C., Kapoor V.K.: Fundamentals of Mathematical Statistics; Eighth Edition; Sultan Chand & Sons.
- 7. Kapur J.N., Saxena H.C.: Mathematical Statistics; Fifteenth Edition; S. Chand & Company Ltd.
- 8. Arora Sanjay and BansiLal: New Mathematical Statistics, Satya Prakashan, New Market, New Delhi,5 (1989)
- 9. Pawagi V.R. & Ranade Saroj A.: Statistical Methods Using R Software; Nirali Publications.

Course Code: RUSSTA503

Course Title: BIOSTATISTICS

Academic year 2022-23

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Understand applications of Statistics in Biological Sciences and epidemiology.
CO 2	Understand the terminologies of Clinical Trials and Bioequivalence studies and use of statistics in these areas.

0	11	Occurs (III-9 Title	One lite.
Course	Unit	Course/ Unit Title	Credits/
Code/ Unit		, 5	Lectures
RUSSTA503	Unit	EPIDEMIC MODELS	15
	I	 The features of Epidemic spread. Definitions of various terms involved. Simple mathematical models for epidemics: Deterministic model without removals, Carrier model. Chain binomial models. Reed - Frost and Greenwood models. Distribution of individual chains and total number of cases. Maximum likelihood estimator of 'p' and its asymptotic variance for households of sizes up to 4. General Epidemics and Host and Vector model 	Lectures
RUSSTA503	Unit	BIOASSAYS	15
	=	 Meaning and scope of bioassays. Relative potency. Direct assays. Fieller's theorem. Quantal Response assays. Tolerance distribution. Median effective dose ED50 and LD50. Probit analysis. Indirect assays. Dose-response relationship. Condition of similarity and Monotony. Linearizing transformations. Parallel line assays. Symmetrical (2, 2) and (3, 3) parallel line assays. Validity tests using orthogonal contrasts. Point Estimate and Interval Estimate of Relative potency. 	Lectures
RUSSTA503	Unit	CLINICAL TRIALS: AN INTRODUCTION	15
	III	 Introduction to clinical trials: The need and ethics of clinical trials. Introduction to ICH E9 guidelines. Common terminology used in clinical trials. Over view of phases (I-IV) Study Protocol, Case record/Report form, 	Lectures

		Blinding (Single/Double) Randomized controlled (Placebo/Active)	
		 Randomized controlled (Placebo/Active controlled), Study Designs (Parallel, Cross Over). 	
		Estimation of Sample Size.	
		Types of Trials: Inferiority, Superiority and	
		Equivalence, Multicentric Trial.	
		Inclusion/Exclusion Criteria. Statistical tools:	4
		Analysis of parallel Design using Analysis of	
		Variance. Repeated Measures ANOVA (Concept	16,6
		only)	
		Concept of odds ratio, Relative Risk.	O'
		Introduction to Survival Analysis for estimating Madian Survival Time Kanlan Major annuals of	
		Median Survival Time. Kaplan Meier approach of survival Analysis.	
RUSSTA503	Unit	BIOEQUIVALENCE	15
100001A000	IV	Definitions of Generic Drug product.	Lectures
	••	Bioavailability, Bioequivalence,	Lootaioo
		Pharmakokinetic (PK) parameters C _{max} , AUC _t ,	
		AUC _{0-∞,} T _{max} , K _{el} , T _{half} .	
		Estimation of PK parameters using 'time vs.	
		concentration' profiles.	
		Designs in Bioequivalence: Parallel (Analysis),	
		Two Way Crossover, Three Way Crossover,	
		Replicated Crossover (Concept only). Advantages of Crossover design over Parallel	
		design.	
		Analysis of Parallel design using logarithmic	
		transformation (Summary statistics, ANOVA and	
	1		i
		90% confidence interval).	
		90% confidence interval). • Confidence Interval approach to establish	

	Course Code: RUSSTAP502(A)
Sr. No.	Practicals based on course
1	Epidemic models

2	Direct Assays
3	Quantal Response Assays
4	Parallel line Assay
5	Clinical Trials
6	Bioequivalence

REFERENCES:

- Bailey N.T.J.: The Mathematical theory of infectious diseases, Second edition, Charles Griffin and Co. London.
- 2. Das M.N and Giri N.C.: Design and Analysis of Experiments, Second edition, Wiley Eastern
- 3. Finney D.J.: Statistical Methods in Biological Assays, First edition, Charles Griffin and Co. London
- 4. Sanford Bolton and Charles Bon: Pharmaceutical Statistics, Fourth edition, Marcel Dekker Inc.
- 5. Zar Jerrold H.: Biostatistical Analysis, Fourth edition, Pearson's education.
- 6. Daniel Wayne W: Biostatistics- A Foundation for Analysis in the Health Sciences, 7th Edition, Wiley Series in Probability and Statistics.
- 7. Friedman L. M., Furburg C., Demets D. L.: Fundamentals of Clinical Trials, First edition, Springer Verlag.
- 8. Fleiss J. L. The Design and Analysis of Clinical Experiments, Second edition, Wiley and Sons
- 9. Shein-Chung-Chow: Design and Analysis of Bioavailability & Bioequivalence studies, Third Edition, Chapman & Hall/CRC Biostatistics series.
- 10. Glenwalker: Common Statistical Methods for clinical Research

Course Code: RUSSTA504
Course Title: ELEMENTS OF ACTUARIAL SCIENCE
Academic year 2022-23

COURSE	DESCRIPTION

OUTCOME	A student completing this course will be able to:
CO 1	Understand the functions of Mortality Table and should be able to relate them with the rate of mortality and calculate probabilities of living and dyeing
CO 2	Differentiate between Nominal and Effective rate of interest. Analyse and evaluate various types of annuities certain, and also calculate the present values and accumulated values
CO 3	Distinguish between the Life annuities and Temporary annuities and calculate the present values of various Life and Temporary annuities
CO 4	Understand the difference between assurance and insurance. Evaluate the single premiums and level annual premiums for various assurance schemes. Distinguish between the Net premiums and the Office premiums

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures
RUSSTA504	Unit	MORTALITY TABLES:	15
	I	 Various mortality functions. Probabilities of living and dying. The force of mortality. Estimation of μ_x from the mortality table. Central Mortality Rate. Laws of mortality: Gompertz's and Makeham's first law. Select, Ultimate and Aggregate mortality tables. Stationary population. Expectation of life and Average life at death. 	Lectures
RUSSTA504	Unit	COMPOUND INTEREST AND ANNUITIES	15
	Ot	CERTAIN:	Lectures
000		 Accumulated value and present value, nominal and effective rates of interest. 	
		 Varying rates of interest. Equation of value. Equated time of payment. 	
		 Present and accumulated values of annuity certain (immediate and due) with and without deferment period. 	
		 Present value for perpetuity (immediate and due) with and without deferment Period. 	
		Present and accumulated values of (i) increasing annuity (ii) increasing annuity when	

		successive instalments form	
		(i) arithmetic progression (ii) Geometric	
		progression (iii) annuity with Frequency different	
		from that with which interest is convertible. Redemption of loan.	
RUSSTA504	Unit	LIFE ANNUITIES:	15
	III	Present value in terms of commutation functions	Lectures
		of Life annuities and Temporary life annuities	
		(immediate and due) with and without deferment	104
		period.	
		Present values of Variable, increasing life	
		annuities and increasing Temporary life	\cup
		annuities (immediate and due).	
RUSSTA504	Unit	ASSURANCE BENEFITS:	15
	IV	Present value of Assurance benefits in terms of	Lectures
		commutation functions of: (i) pure endowment	
		assurance (ii) temporary assurance (iii)	
		endowment assurance (iv) whole life assurance	
		(v) special endowment assurance (vi) deferred	
		temporary assurance (vii) Double Endowment	
		Net premiums: Net level annual premiums	
		(including limited period of payment) for various	
		assurance plans.	
		Office premiums.	

Course Code: RUSSTAP502(B)				
Sr. No.	Practical based on course			
1	Mortality tables 1			
2	Mortality tables 2			
3	Annuities 1			
4	Annuities 2			
5	Life annuities			
6	Assurance benefits			

REFERENCES:

- 1. Neill A.: Life Contingencies, First edition, Heineman educational books London
- 2. Dixit S.P., Modi C.S., Joshi R.V.: Mathematical Basis of Life Assurance, First edition Insurance Institute of India.
- 3. Gupta S. C. & Kapoor V. K.: Fundamentals of Applied Statistics, Fourth edition, Sultan Chand & Sons.

4. Ajaykumar Srivastava and Gorakhnath Agarwal: Mathematical Basis of Life Assurance

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	Class Test/ Project / Assignment / Presentation	20
2	Class Test/ Project / Assignment / Presentation	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
1	Any 2 out of 3 sub-parts	16	Unit I
2	Any 2 out of 3 sub-parts	16	Unit II
3	Any 2 out of 3 sub-parts	14	Unit III
4	Any 2 out of 3 sub-parts	14	Unit IV
4,	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks (Per Paper)

Particulars	Marks
Journal and attendance	5
Assignments using Statistical Software	15

Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Duration - These examinations shall be of **THREE HOURS** duration.

Particulars	Paper
Exam (RUSSTAP501(A) & RUSSTAP501(B))	60 (3 hours)
Exam (RUSSTAP502(A) & RUSSTAP502(B))	60 (3 hours)
Total	120

(Every paper will consist of two parts A and B. Every **part** will consist of two questions of 30 marks each. Learners to attempt one question from each part.)

Overall Examination & Marks Distribution Pattern Semester V

Cours e	RU	SSTA50	D1	RU	SSTA50	02	RU	SSTA5(03	RU	SSTA5(04	Gra nd Tot al
	Inter	Exter	Tot	Inter	Exter	Tot	Inter	Exter	Tot	Inter	Exter	Tot	
	nal	nal	al	nal	nal	al	nal	nal	al	nal	nal	al	
Theor y	40	60	10 0	40	60	10 0	40	60	10 0	40	60	10 0	400
Practi cals	20	30	50	20	30	50	20	30	50	20	30	50	200

Course Code: RUSSTA601

Course Title: DISTRIBUTION THEORY AND STOCHASTIC PROCESSES

Academic year 2022-23

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Use the concept of generating function for defining probability generating function and analyse its properties.
CO 2	Understand various stochastic processes and derive its parameters.
CO 3	Describe and classify various basic queueing models and derive its measures.

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures
RUSSTA601	Unit	GENERATING FUNCTIONS	15
	I	Definitions of generating function and probability	Lectures
	_	generating function. Expression for mean and	
		variance in terms of generating functions.	
		Definition of a convolution of two or more	
		sequences. Generating function of a	
		convolution.	
		Generating functions of the standard discrete	
		distributions. Relation between: i) Bernoulli	
		and Binomial distributions ii) Geometric and	
		Negative Binomial distributions in terms of	
		convolutions.	
RUSSTA601	Unit	STOCHASTIC PROCESSES	15
	Ш	Definition of stochastic process. Postulates and	Lectures
		difference differential equations for : (i) Pure	
	0	birth process (ii) Poisson process with initially	
		'a' members, for a =0 and a >0 (iii) Yule Furry	
		process (iv) Pure death process (v) Death	
		process with μ _n =μ (vi) Death process with μ _n =nμ	
		(vii) Birth and death process (viii) Linear growth	
(O)		model.	
		 Derivation of P_n (t), mean and variance where 	
		ever applicable.	
RUSSTA601	Unit	QUEUING THEORY –I	15
	Ш	 Basic elements of the Queuing model. 	Lectures
		 Roles of the Poisson and Exponential 	
		distributions.	

		 Assuming the difference differential equations 	
		for birth and death process, derivation of Steady	
		state probabilities for birth and death process.	
		Steady state probabilities and various average	
		characteristics for the following models:	
		(i) (M/M/1) : (GD/∞/∞), Waiting time distributions	
		of (M/M/1)(FCFS/∞/∞) (ii) (M/M/1) : (GD/ N/∞)	
RUSSTA601	Unit	QUEUING THEORY –II	15
RUSSTA601	Unit IV	QUEUING THEORY –II Other queuing models	15 Lectures
RUSSTA601			
RUSSTA601		Other queuing models	
RUSSTA601		Other queuing models i) (M/M/c): (GD/ ∞ / ∞), ii) (M/M/c):(GD/ N / ∞), iii) (M/M/ ∞) : (GD/ ∞ / ∞) (iv) Machine Serving	
RUSSTA601		Other queuing models i) (M/M/c): (GD/ ∞/ ∞), ii) (M/M/c):(GD/ N /∞),	

	Course Code: RUSSTAP601(A)
Sr. No.	Practical based on course
1	Generating Function
2	Stochastic Processes
3	Queuing Theory -1
4	Queuing Theory -2
5	Queuing Theory -3

REFERENCES:

- 1. Feller W: An introduction to probability theory and it's applications, Volume: 1, Third edition, Wiley Eastern Limited.
- 2. Hogg R. V. & CraigA.T.: Introduction to Mathematical Statistics, Fifth edition, Pearson Education (Singapore) Pvt Ltd.

- 3. Mood A M, Graybill F A, Bose D C: Introduction to the theory of statistics, Third edition, Mcgraw- Hill Series.
- 4. Hogg R. V. and Tanis E.A.: Probability and Statistical Inference, Fourth edition, McMillan Publishing Company
- 5. Gupta S C & Kapoor V K: Fundamentals of Mathematical statistics, Eleventh edition, Sultan Chand & Sons.
- Taha H.A.: Operations Research: An introduction, Eighth edition, Prentice Hall of India Pvt. Ltd.
- 7. Medhi J.: Stochastic Processes, Second edition, Wiley Eastern Ltd.
- 8. Biswas S.: Topics in Statistical Methodology (1992), First edition, Wiley Eastern Ltd.
- 9. Kapur J. N., Saxena H. C.: Mathematical Statistics, Fifteenth edition, S. Chand and Company

Course Code: RUSSTA602

Course Title: TESTING OF HYPOTHESES

Academic year 2022-23

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION A student completing this course will be able to:
CO 1	Define various terms in testing of hypotheses.
CO 2	Identify the Most Powerful Test using Neyman-Pearson Lemma and
	obtain a Uniformly Most Powerful Test
CO 3	Understand the concept of Likelihood Ratio Test (LRT) and
	construct LRT under different situations for a normal distribution
CO 4	Construct Sequential Probability Ratio Tests for Bernoulli, Binomial,
	Poisson, Normal, Exponential distributions
CO 5	Differentiate between parametric and non-parametric tests and
	apply various Non-parametric tests

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures

RUSSTA602	Unit	MOST POWERFUL TESTS	15
	I	 Problem of testing of hypothesis. 	Lectures
		• Definitions and illustrations of i) Simple	
		hypothesis ii) Composite hypothesis iii)Null	
		Hypothesis iv) Alternative Hypothesis v)Test of	
		hypothesis vi) Critical region vii) Type I and	
		Type II errors viii) Level of significance ix) p-	_ (
		value x) size of the test xi) Power of the test	_(O)
		xii) Power function of a test xiii) Power curve.	.10.4
		 Definition of most powerful test of size α for a 	
		simple hypothesis against a simple alternative	
		hypothesis. Neyman-Pearson fundamental	
		lemma.	
RUSSTA602	Unit	UNIFORMLY MOST POWERFUL & LIKELIHOOD	15
	II	RATIO TESTS	Lectures
		Definition, Existence and Construction of	
		uniformly most powerful (UMP) test. Likelihood	
		ratio principle.	
		Definition of test statistic and its asymptotic	
		distribution (statement only)	
		Construction of LRT for the mean of normal	
		distribution for i) known σ^2 ii) unknown σ^2 (two	
		sided alternatives).	
		 LRT for variance of normal distribution for 	
		i) known μ ii) unknown μ (two sided alternatives	
		hypotheses)	
RUSSTA602	Unit III	SEQUENTIAL PROBABILITY RATIO TEST (SPRT)	15
	""	 Sequential test procedure for testing a simple 	Lectures
	• •	null hypothesis against a simple alternative	
		hypothesis. Its comparison with fixed sample	
4	0	size (Neyman-Pearson) test procedure.	
		 Definition of Wald's SPRT of strength (α, β). 	
~0		Problems based on Bernoulli, Binomial,	
		Poisson, Normal, Exponential distributions.	
		Graphical /tabular procedure for carrying out	
		the tests.	
0.		ASN and OC Function	
RUSSTA602	Unit	NON-PARAMETRIC TESTS	15
	IV	Need for non-parametric tests.	Lectures
		• Distinction between a parametric and a non-	
		parametric test.	
		• Concept of a distribution free statistic.	
		Nonparametric tests. (i) Sign test (Single and	

Two samples) (ii) Wilcoxon's signed rank test	
(iii) Median test (iv) Mann-Whitney test (v) Run	
test. (Single and Two samples)	
(vi) Fisher Exact Test (vii) Kruskal Wallis	
ANOVA (viii) Friedman ANOVA	
Assumptions, justification of the test procedure	
for small & large samples.	. (

	Course Code: RUSSTAP601(B)
Sr. No	Practical based on course
1	Testing of Hypothesis 1
2	Testing of Hypothesis-2
3	SPRT
4	Non-Parametric test-1
5	Non-Parametric test-2
6	Use of R software.

REFERENCES:

- 1. Hogg R.V. and Craig A.T: Introduction to Mathematical Statistics Fourth edition London Macmillan Co. Ltd.
- 2. Hogg R.V. and Tanis E.A.: Probability and Statistical Inference. Third edition Delhi Pearson Education.
- 3. Lehmann, E. L.: Testing of Statistical Hypothesis, Wiley &sons
- 4. Rao, C. R.: Linear Statistical Inference,
- 5. Daniel W. W.: Applied Non Parametric Statistics First edition Boston-Houghton Mifflin Company.
- 6. Wald A.: Sequential Analysis First edition New York John Wiley & Sons
- 7. Biswas S.: Topics in Statistical Methodology. First edition New Delhi Wiley eastern Ltd.
- 8. Gupta S.C. and Kapoor V.K.: Fundamentals of Mathematical Statistics Tenth edition New Delhi S. Chand & Company Ltd.
- 9. Sanjay Aroraand BansiLal: New Mathematical Statistics, Satya Prakashan, New Market, New Delhi, 5(1989).

10. Pawagi V. R. and Ranade Saroj A: Statistical Methods Using R Software. Nirali Publications.

Course Code: RUSSTA603

Course Title: APPLIED STATISTICS-I

Academic year 22-23

COURSE OUTCOMES:

COURSE	DESCRIPTION
	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Understand the various costs of Inventory and derive the economic order quantity and reorder period, for deterministic and probabilistic inventory models
CO 2	Obtain the optimum age of replacement of an item for different situations and distinguish between individual and group replacement policies
CO 3	Simulate random numbers and random observations for various probability distributions. Apply Monte-Carlo technique to solve problems in Inventory and Queueing Theory.
CO 4	Understand the various terminologies of Micro Economics and its applications.

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures
RUSSTA603		INVENTORY CONTROL	15
	I	Introduction to Inventory Problem	Lectures
		Deterministic Models: Single item static EOQ	

models for:	 Constant rate of demand with instantaneous replenishment, with and without shortages. Constant rate of demand with uniform rate of replenishment, with and without shortages. Constant rate of demand with instantaneous replenishment without shortages, with one and two price breaks. Probabilistic models: Single period with Instantaneous demand (discrete and continuous) without setup cost. Uniform demand (discrete and continuous) without set up cost. RUSSTA603 Unit REPLACEMENT
II Replacement of items that deteriorate with time and value of money that remains constant and that change with time. Replacement of items that fail completely: Individual replacement and Group replacement policies. RUSSTA603 Unit III SIMULATION Scope of simulation applications. Types of simulation. Monte Carlo Technique of Simulation and Bootstrapping. Elements of discrete event simulation. Generation of random numbers. Sampling from probability distribution. Inverse method. Generation of random observations from i). Uniform distribution ii) Exponential distribution. Application of Simulation techniques to real life situations.	
and value of money that remains constant and that change with time. Replacement of items that fail completely: Individual replacement and Group replacement policies. RUSSTA603 Unit III SIMULATION Scope of simulation applications. Types of simulation, Monte Carlo Technique of Simulation and Bootstrapping. Elements of discrete event simulation. Generation of random numbers. Sampling from probability distribution. Inverse method. Generation of random observations from i) Uniform distribution ii) Exponential distribution iii) Gamma distribution iv) Normal distribution. Application of Simulation techniques to real life situations. RUSSTA603 Unit IV Mathematical Economics: Behaviour of Demand and Supply, Demand functions. Cost and Revenue functions. The elasticity of a function, Elasticity of (i) Demand (ii) Cost. Normal conditions of (i) demand (ii) cost. Features of prefect competition. Nonopoly (including effects of taxation and subsidy), Duopoly. Production function. Euler's theorem linear homogenous production functions, Cobb-Douglas production function, CES production	 Replacement of items that deteriorate with time Lectures
that change with time. Replacement of items that fail completely: Individual replacement and Group replacement policies. RUSSTA603 Unit III SIMULATION Scope of simulation applications. Types of simulation and Bootstrapping. Elements of discrete event simulation. Generation of random numbers. Sampling from probability distribution. Inverse method. Generation of random observations from i) Uniform distribution ii) Exponential distribution. Application of Simulation techniques to real life situations. RUSSTA603 Unit IV Mathematical Economics: Behaviour of Demand and Supply, Demand functions. Cost and Revenue functions. The elasticity of a function, Elasticity of (i) Demand (ii) Cost. Normal conditions of (i) demand (ii) cost. Features of prefect competition. Monopoly (including effects of taxation and subsidy), Duopoly. Production function. Euler's theorem linear homogenous production functions, Cobb-Douglas production function, CES production	
RUSSTA603 Unit III RUSSTA603 Unit IIII RUSSTA603 Unit IIII RUSSTA603 Unit IIII RUSSTA603 Unit IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	and value of money that remains constant and
RUSSTA603 Unit III Scope of simulation applications. Types of simulation. Monte Carlo Technique of Simulation and Bootstrapping. Elements of discrete event simulation. Generation of random numbers. Sampling from probability distribution. Inverse method. Generation of random observations from i) Uniform distribution iii) Exponential distribution. Application of Simulation techniques to real life situations. RUSSTA603 Unit IV Mathematical Economics: Behaviour of Demand and Supply, Demand functions. Cost and Revenue functions. The elasticity of a function, Elasticity of (i) Demand (ii) Cost. Normal conditions of (i) demand (ii) cost. Features of prefect competition. Monopoly (including effects of taxation and subsidy), Duopoly. Production function. Euler's theorem linear homogenous production functions, Cobb-Douglas production function, CES production	that change with time.
RUSSTA603 Unit III Scope of simulation applications. Types of simulation. Monte Carlo Technique of Simulation and Bootstrapping. Elements of discrete event simulation. Generation of random numbers. Sampling from probability distribution. Inverse method. Generation of random observations from i) Uniform distribution ii) Exponential distribution iii) Gamma distribution iv) Normal distribution. Application of Simulation techniques to real life situations. RUSSTA603 Unit IV Mathematical Economics: Behaviour of Demand and Supply, Demand functions. Cost and Revenue functions. The elasticity of a function, Elasticity of (i) Demand (ii) Cost. Normal conditions of (i) demand (ii) cost. Features of prefect competition. Nonopoly (including effects of taxation and subsidy), Duopoly. Production function. Euler's theorem linear homogenous production functions, Cobb-Douglas production function, CES production	Replacement of items that fail completely:
RUSSTA603 Unit III Scope of simulation applications. Types of simulation. Monte Carlo Technique of Simulation and Bootstrapping. Elements of discrete event simulation. Generation of random numbers. Sampling from probability distribution. Inverse method. Generation of random observations from i) Uniform distribution ii) Exponential distribution iii) Gamma distribution iv) Normal distribution. Application of Simulation techniques to real life situations. RUSSTA603 Unit IV Mathematical Economics: Behaviour of Demand and Supply, Demand functions. Cost and Revenue functions. The elasticity of a function, Elasticity of (i) Demand (ii) Cost. Normal conditions of (i) demand (ii) cost. Features of prefect competition. Nonopoly (including effects of taxation and subsidy), Duopoly. Production function. Euler's theorem linear homogenous production functions, Cobb-Douglas production function, CES production	Individual replacement and Group replacement
RUSSTA603 Unit III Scope of simulation applications. Types of simulation. Monte Carlo Technique of Simulation and Bootstrapping. Elements of discrete event simulation. Generation of random numbers. Sampling from probability distribution. Inverse method. Generation of random observations from i) Uniform distribution ii) Exponential distribution iii) Gamma distribution iv) Normal distribution. Application of Simulation techniques to real life situations. RUSSTA603 Unit IV Mathematical Economics: Behaviour of Demand and Supply, Demand functions. Cost and Revenue functions. The elasticity of a function, Elasticity of (i) Demand (ii) Cost. Normal conditions of (i) demand (ii) cost. Features of prefect competition. Monopoly (including effects of taxation and subsidy), Duopoly. Production function. Euler's theorem linear homogenous production functions, Cobb-Douglas production function, CES production	
III Scope of simulation applications. Types of simulation. Monte Carlo Technique of Simulation and Bootstrapping. Elements of discrete event simulation. Generation of random numbers. Sampling from probability distribution. Inverse method. Generation of random observations from i) Uniform distribution ii) Exponential distribution iii) Gamma distribution iv) Normal distribution. Application of Simulation techniques to real life situations. RUSSTA603 Unit IV Mathematical Economics: Behaviour of Demand and Supply, Demand functions. Cost and Revenue functions. The elasticity of a function, Elasticity of (i) Demand (ii) Cost. Normal conditions of (i) demand (ii) cost. Features of prefect competition. Monopoly (including effects of taxation and subsidy), Duopoly. Production function. Euler's theorem linear homogenous production functions, Cobb-Douglas production function, CES production	·
simulation. Monte Carlo Technique of Simulation and Bootstrapping. Elements of discrete event simulation. Generation of random numbers. Sampling from probability distribution. Inverse method. Generation of random observations from i) Uniform distribution ii) Exponential distribution iii) Gamma distribution iv) Normal distribution. Application of Simulation techniques to real life situations. RUSSTA603 Unit Nathematical Economics: Behaviour of Demand and Supply, Demand functions. Cost and Revenue functions. The elasticity of a function, Elasticity of (i) Demand (ii) Cost. Normal conditions of (i) demand (ii) cost. Features of prefect competition. Nonopoly (including effects of taxation and subsidy), Duopoly. Production function. Euler's theorem linear homogenous production functions, Cobb-Douglas production function, CES production	
 Behaviour of Demand and Supply, Demand functions. Cost and Revenue functions. The elasticity of a function, Elasticity of (i) Demand (ii) Cost. Normal conditions of (i) demand (ii) cost. Features of prefect competition. Monopoly (including effects of taxation and subsidy), Duopoly. Production function. Euler's theorem linear homogenous production functions, Cobb-Douglas production function, CES production 	simulation. Monte Carlo Technique of Simulation and Bootstrapping. • Elements of discrete event simulation. • Generation of random numbers. Sampling from probability distribution. Inverse method. Generation of random observations from i) Uniform distribution ii) Exponential distribution iii) Gamma distribution iv) Normal distribution. • Application of Simulation techniques to real life situations.
functions. Cost and Revenue functions. The elasticity of a function, Elasticity of (i) Demand (ii) Cost. Normal conditions of (i) demand (ii) cost. Features of prefect competition. Monopoly (including effects of taxation and subsidy), Duopoly. Production function. Euler's theorem linear homogenous production functions, Cobb-Douglas production function, CES production	

The elasticity of substitution.	

	Course Code: RUSSTAP602(A)
Sr. No.	Practical based on course
1	Inventory-1
2	Inventory-2
3	Replacement
4	Simulation
5	Mathematical Economics 1
6	Mathematical Economics 2

REFERENCES:

- Vora N. D.: Quantitative Techniques in Management, Third edition, McGraw Hill Companies
- 2. Bannerjee B.: Operation Research Techniques for Management, First edition, Business books
- 3. Bronson R.: Theory and problems of Operations research, First edition, Schaum's Outline series
- 4. Kantiswarup, P.K. Gupta, Manmohan : Operations Research, Twelfth edition, Sultan Chand & sons
- 5. Sharma S. D.: Operations Research, Eighth edition, Kedarnath Ramnath & Co.
- 6. Taha H.A.: Operations Research An Introduction, Prentice Hall of India
- 7. Allen R.G.D.: Mathematical Analysis for Economics
- 8. Henderson J. M. and Quandt R. E.: Micro Economic Theory-A mathematical approach
- 9. Gupta S.C. and Kapoor V. K.: Fundamentals of Applied Statistics

Course Code: RUSSTA604

Course Title: APPLIED STATISTICS-II

Academic year 2022-23

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Understand the concept of Predictive modelling and use techniques like regression analysis, time series for real life situations.
CO 2	Understand an important concept of Reliability and the mathematical aspects of computing reliability in different scenarios.
CO 3	Apply k-means clustering method of classification.

Course	Unit	Course/ Unit Title	Credits/
Code/ Unit			Lectures
RUSSTA604	Unit	LINEAR REGRESSION I	15
	I	Linear regression model with one or more	Lectures
		explanatory variables. Assumptions of the model,	
		Derivation of Ordinary Least Square (OLS)	
		estimators of regression coefficients, (for one and	
		two explanatory variables models). Properties of	
		least square estimators (without proof). Coefficient	
		of determination R ² and adjusted R ² .	
		Procedure of testing:	
		Overall significance of the model	
		Significance of individual coefficients	
		Significance of incremental contribution of	
		explanatory variable for two explanatory variables	
		model.	
		Confidence intervals for the regression	
		coefficients.	
~ 0		Multiple Linear Regression with Qualitative	
		Independent Variable.	
RUSSTA604	Unit	LINEAR REGRESSION II	15
RU331 A004	II		Lectures
	11	Autocorrelation: Concept, Detection using Durbin Wetcon Test Conception Least Square (CLS)	Lectures
		Watson Test, Generalized Least Square (GLS) method.	
		1110 1110 1110	
		Heteroscedasticity: Concept, Detection using Prough Pages Codfroy, test, Weighted Least	
		Breusch-Pagan-Godfrey test. Weighted Least	
		Square (WLS) estimators	

		 Multicollinearity: Concept, Detection using (i) R square & t ratios (ii) Variance Inflation Factor (VIF), Remedial measures for Multicollinearity: Ridge Regression. Concept of Statistical Outliers, Detection of Influential Observation. Cook's Distance and Influence Plot. Hold Out method for Model Validation. Binary Logistic Regression, Concept of Multinomial and ordinal logistic 	
D1100=100;	11 14	Step-wise Regression: Concept and Use	4 =
RUSSTA604	Unit	RELIABILITYConcept of reliability, Hazard-rate. Bath tub curve.	15
	III	Failure time distributions: (i) Exponential (ii)	Lectures
		Gamma (iii) Weibull (iv) Gumbel.	
		 Definitions of increasing (decreasing) failure rate. 	
		 System Reliability. Reliability of (i) series; (ii) 	
		parallel system of independent components	
		having exponential life distributions.	
		 Mean Time to Failure of a system (MTTF). 	
RUSSTA604	Unit	,	15
1.00017.004	IV	MODELS	Lectures
		 Cluster Analysis: Introduction to cluster analysis, 	
		difference between k-means and hierarchical	
		methods of clustering. Applications of clustering.	
		Use of R to carry out k-means clustering.	
		• Time Series Models: Concept of stationary time	
	. 4	series (graphical and DF test, Methods of	
		converting non-stationary time series into stationary time series by differencing method and	
		detrending method, introduction to Box-Jenkin's	
		ARIMA model (5 steps)	
	<u> </u>		

Course Code: RUSSTAP602(B)						
Sr. No. Practical based on course						
1	Multiple regression model -1					

2	Multiple regression model- 2
3	Use of R in MLR, Binary Logistic Regression
4	Reliability
5	Cluster Analysis
6	Time Series Regression-ARMA/ ARIMA

REFERENCES:

- 1. Gupta S. C. & Kapoor V. K.: Fundamentals of Applied Statistics, Fourth edition, Sultan Chand & Sons.
- 2. Sharma J. K.: Operations Research Theory and Application, Third edition, Macmillan India Ltd.
- 3. Spiegel M.R.: Theory and Problems of Statistics, Fourth edition, Schaum's Outline Series Tata McGraw Hill
- 4. Taha Hamdy A.: Operations Research: Eighth edition, Prentice Hall of India Pvt. Ltd
- VoraN. D.: Quantitative Techniques in Management, Third edition, McGraw Hill Companies
- 6. Barlow R.E. and Prochan Frank: Statistical Theory of Reliability and Life Testing Reprint, First edition, Holt, Reinhart and Winston
- 7. Mann N.R., Schafer R.E., Singapurwalla N.D.: Methods for Statistical Analysis of Reliability and Life Data, First edition, John Wiley & Sons.
- 8. Damodar Gujrathi, Sangetha S: Basic Econometrics, Fourth edition, McGraw-Hill Companies.
- 9. Greene William: Econometric Analysis, First edition, McMillan Publishing Company.
- 10. Johnson and Richen: Applied Multivariate Statistical Analysis.

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks		
1	Class Test/ Project / Assignment / Presentation	20		
2	Class Test/ Project / Assignment / Presentation	20		
	TOTAL	40		

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **two hours** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
1	Any 2 out of 3 sub-parts	16	Unit I
2	Any 2 out of 3 sub-parts	16	Unit II
3	Any 2 out of 3 sub-parts	14	Unit III
4	Any 2 out of 3 sub-parts	14	Unit IV
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks (Per Practical Paper)

Particulars	Marks
Journal and attendance	5
Projects based on primary / secondary data	15
Total	20

B) External Examination: 60%- 60 Marks (Per Practical Paper) Semester End Practical Examination:

Duration - These examinations shall be of **THREE HOURS** duration.

Particulars Particulars	Paper

Exam (RUSSTAP601(A) & RUSSTAP601(B))	60 (3 hours)
Exam (RUSSTAP602(A) & RUSSTAP602(B))	60 (3 hours)
Total	120

(Every paper will consist of two parts A and B. Every **part** will consist of two questions of 30 marks each. Learners to attempt one question from each part. Each question will be based on all units.)

Overall Examination & Marks Distribution Pattern Semester VI

Cour se	RUSSTA601		RU	SSTA60)2	RU	SSTA60	03	RU	SSTA60)4	Gra nd Tot al	
	Inter	Exter	Tot	Inter	Exter	Tot	Inter	Exter	Tot	Inter	Exter	Tot	
	nal	nal	al	nal	nal	al	nal	nal	al	nal	nal	al	
Theo ry	40	60	10 0	40	60	10 0	40	60	10 0	40	60	10 0	400
Pract ical	20	30	50	20	30	50	20	30	50	20	30	50	200
