S.P. Mandali's Ramnarain Ruia Autonomous College (Affiliated to University of Mumbai)

Syllabus for

Program: B.Sc. (Physics)

Program Code: RUSPHY

(Credit Based Semester and Grading System with effect from the academic year 2021-22)

PROGRAM OUTCOMES

РО	PO Description
	A student completing Bachelor's Degree in Physics program will
	be able to:
PO 1	Recall and explain acquired scientific knowledge in a comprehensive
	manner and apply the skills acquired in their chosen discipline. Interpret
	scientific ideas and relate its interconnectedness to various fields in
	science.
PO 2	Evaluate scientific ideas critically, analyse problems, explore options for
	practical demonstrations, illustrate work plans and execute them,
	organise data and draw inferences
PO 3	Explore and evaluate digital information and use it for knowledge
	upgradation. Apply relevant information so gathered for analysis and
	communication using appropriate digital tools.
PO 4	Ask relevant questions, understand scientific relevance, hypothesize a
	scientific problem, construct and execute a project plan and analyze
	results.
PO 5	Take complex challenges, work responsibly and independently, as well
	as in cohesion with a team for completion of a task. Communicate
	effectively, convincingly and in an articulate manner.
PO 6	Apply scientific information with sensitivity to values of different cultural
	groups. Disseminate scientific knowledge effectively for upliftment of
	the society.
PO 7	Follow ethical practices at work place and be unbiased and critical in
M_{i}	interpretation of scientific data. Understand the environmental issues
	and explore sustainable solutions for it.
PO 8	Keep abreast with current scientific developments in the specific
	discipline and adapt to technological advancements for better
	application of scientific knowledge as a lifelong learner

PROGRAM SPECIFIC OUTCOMES

PSO	Description
	A student completing Bachelor's Degree in BSc program in the subject of Physics will be able to:
PSO 1	To demonstrate fundamental and procedural knowledge related to different areas of study in Physics including mechanics, optics, modern physics, thermodynamics, electronics, electrodynamics at a level attuned with graduate programs in physics at peer institutions
PSO 2	To demonstrate comprehensive, quantitative and conceptual understanding of the core areas of physics.
PSO 3	To apply the principles and acquired skill-set related to physics, to handle innovative and unfamiliar problems, so that effective solution or strategy to deal with, could be developed.
PSO 4	To explore and deduce quantitative results in the extents of physics.
PSO 5	To use contemporary experimental apparatus and analysis tools to acquire, analyse and interpret scientific data in the extents of physics.
PSO 6	To communicate scientific results effectively in presentations or posters in the extents of physics to both the scientists and public at large.
PSO 7	Utilize acquired ICT skills, physics practical skills, mathematical skills to prepare for employment, for advancement of a career path and also for lifelong learning in Physics.

PROGRAM OUTLINE

YEAR	SEM	COURSE CODE	COURSE TITLE	CREDITS
2021-22	I	RUSPHY101	Mechanics, Optics &Thermodynamics	2
			Unit-I :Mechanics	
			Unit-II :Optics	
			Unit-III-Thermodynamics	90
		RUSPHY102	Nuclear Physics & Quantum Mechanics	2
			Unit-I : Nuclear Physics	
			Unit-II : Modern Physics	
			Unit-III : Introduction to Quantum Mechanics	
		RUSPHYP01	Physics Laboratory Course (Group A + Group B + Skill Experiments)	2
			Total	6

YEAR	SEM	COURSE CODE	COURSE TITLE	CREDITS
2021-22	II	RUSPHY201	Mathematical Physics & Mechanics	2
			Unit-I: Vector algebra and Vector calculus	
			Unit-II : Differential equations and Transient response of circuits	
		:10/1	Unit-III- Harmonic Oscillations and Wave Motion	
		RUSPHY202	Electronics & Electricity	2
	2		Unit-I: Circuit theorems and Alternating current	
	11/		Unit-II: Digital and Analog electronics	
- %			Unit-III : Analog Electronics- Transistor Biasing	
50		RUSPHYP02	Physics Laboratory Course (Group A + Group B + demonstration Experiments)	2
			Total	6

YEAR	SEM	COURSE	TITLE	Credits
		CODE		
2021-22	III	RUSPHY301	Mechanics & Thermodynamics	2
			Unit I: Mechanics	
			Unit II: Thermal Physics	40.
			Unit III: Thermodynamics & Statistical Physics	200
		RUSPHY302	Vector calculus, Analog and Digital Electronics	2
			Unit I: Vector Calculus	
			Unit II: Analog Electronics	
			Unit III: Analog and Digital Electronics	
		RUSPHY303	Applied Physics I	2
			Unit I: Acoustics , laser and Fiber Optics	
			Unit II: Biophysics	
			Unit III: Materials- Properties and Applications	
		RUSPHP03	Practicals based on above three courses	3
	N	911	Total	9

YEAR	SEM	COURSE	TITLE	Credits
		CODE		
2021-22	IV	RUSPHY401	Optics, Applied optics	2
			Unit I: Interference in thin films,	
			Diffraction- Fresnel & Fraunhofer	.0
			Unit II: polarization	
			Unit III: Applied Optics	60
		RUSPHY402	Introduction to Quantum Mechanics	2
			Unit I: Origin of Quantum Mechanics	
			Unit II: Quantum Mechanics	
			Unit III: Applications of Schrodinger's	
			Steady State Equation	
		RUSPHY403	Applied Physics I	2
			Unit I: Synthesis of Nano-materials	
			Unit II: Analysis techniques	
			Unit III: Microprocessor-8085	
		RUSPHP04	Practicals based on above three	3
			courses	
	N	(9)	Total	9

Credits	TITLE	COURSE CODE	SEM	YEAR
2.5	Mathematical Methods of Physics, Thermal & Statistical Physics	RUSPHY501	V	2021-22
0	Unit I : Probability			
60	Unit II : Differential equations			
0.5	Unit III : Statistical & Thermal Physics			
	Unit IV : Statistical Mechanics and Quantum Statistics			
2.5	Solid State Physics	RUSPHY502		
	Unit I : Crystal Physics			
	Unit II: Electrical properties of metals			
	Unit III : Conduction in Semiconductors			
d	Unit IV Diode, Magnetism and superconductivity			
2.5	Atomic & Molecular Physics	RUSPHY503		
1	Unit I : Schrödinger's equation and Hydrogen atom			
	Unit II : Electron Spin	01		
	Unit III : Zeeman effect and Paschen-Back effect			
	Unit IV : Molecular Spectra			
2.5	Electrodynamics	RUSPHY504		
	Unit I : Electrostatics			
	Unit II: Polarisation & Magnetostatics			
	Unit III : Magnetism & Varying Fields			0.0
	Unit IV : Electromagnetic Waves			
3	Practical Course (RUSPHYP501 – Group A)	RUSPHP 05		
3	Practical Course (RUSPHYP502 – Group B)			
al 16	Total			

YEAR	SEM	COURSE CODE	TITLE	Credits
2021-22	VI	RUSPHY601	Classical Mechanics& Non Linear Mechanics	2.5
			Unit I : Central Force	
			Unit II : Lagrange's equations	
			Unit III : Kinematics	0
			Unit IV : Non linear mechanics	
		RUSPHY602	Electronics	2.5
			Unit I : FET &SCR	
			Unit II: Regulated DC power supply, Differential Amplifier, Transistor Multivibrators	
			Unit III: Operational Amplifier and 555 Timer	
			Unit IV : Logic family	
		RUSPHY603	Nuclear Physics	2.5
			Unit I : Alpha & Beta Decay	
			Unit II: Gamma Decay & Nuclear Models	
			Unit III : Particle Accelerators & Energy Generation	
		6//	Unit IV : Meson theory & Elementary particles	
		RUSPHY604	Special Theory of Relativity	2.5
		10,	Unit I : Special Theory of Relativity & Relativistic Kinematics	
			Unit II : Relativistic Kinematics	
			Unit III : Relativistic Dynamics	
8) .		Unit IV : Relativity and Electromagnetism	
		RUSPHP 06	Practical Course (RUSPHYP601 – Group A)	3
			Practical Course (RUSPHYP602 – Group B)	3
			Total	16

S.P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for F.Y.B.Sc. SEM I & II

Program: B.Sc. (Physics)

Program Code: RUSPHY

(Credit Based Semester and Grading System with effect from the academic year 2021-22)

Course Title: Mechanics, Optics & Thermodynamics Academic year 2021-22

Learning Objectives: After successful completion of this course, students would acquire the following knowledge & skills:

- (1) The ability to apply the principles of physics to solve innovative and unfamiliar problems
- (2) The ability to explore and deduce quantitative results in the extents of physics
- (3) The ability to use contemporary experimental apparatus and analysis tools to acquire, analyze and interpret scientific data
- (4) The ability to apply laws of mechanics and thermodynamics and to communicate scientific results effectively in presentations or posters
- (5) A comprehensive, quantitative and conceptual understanding of the core areas of mechanics, optics, thermodynamics at a level attuned with graduate programs in physics at peer institutions

Learning Outcomes: After the successful completion of this course, the student will be able to:

- Understand the concepts of Center of Mass and Linear momentum. Apply it to twoand three-dimensional objects. Apply Newton's Second Law to the motion of system of particles.
- 2. Identify the concept of impulse by its definition. Relate it to momentum. Apply the relationship between impulse, average force, and the time interval taken by the impulse
- 3. Apply the conservation of linear momenta to relate the initial momenta of the particles to their momenta at a later instant, in case of isolated system of particles.
- 4. Distinguish between all types of collisions. Apply the conservation of momentum for an isolated one-dimensional collision to relate the initial momenta of the objects to their momenta after the collision. Identify that in an isolated system, the momentum and velocity of the center of mass are not changed even if the objects collide.
- 5. Apply the conservation laws for both the total energy and the net momentum of the colliding bodies, for isolated elastic collisions in one dimension.
- 6. Distinguishing the concepts of Interference, aberrations, and Diffraction and its practical application to Eyepieces in optical instruments.
- 7. Apply the laws of thermodynamics to formulate the relations necessary to analyze a thermodynamic process.
- 8. Distinguishing the concepts of specific heat, heat capacity and entropy processes.

DETAILED SYLLABUS- RUSPHY101

Course	Unit	Title	Credits/
Code			lectures
RUSPHY101		Mechanics, Optics & Thermodynamics	2 credits
Unit I	I	Mechanics	15
			lectures
		Center of Mass, Motion of the Center of Mass, Linear momentum of a Particle, Linear momentum of a System of Particles. Linear momentum with respect to CM coordinate (shift of origin from Lab to CM). Conservation of Linear Momentum-Elastic and Inelastic collision, coefficient of restitution. Numericals Some Applications of the Momentum Principle System of Variable Mass, Numericals (HRW) part I -9.1, 9.2, 9.3, 9.4, 9.5, 9.6,9.7 Elasticity – Review of elastic constants Y, K, η and σ Equivalence of shear strain to compression and extension strains, Relation between elastic constants Couple for twist in cylinder Numericals from all topics. HP: 15.2A, 15.3A, 15.4A, 15.5A, 15.7A	3.6 3.6
Unit II	II	Optics	15
			lectures
69/1		Equivalent focal length of two thin lenses, thick lens, cardinal points of thick lens, Ramsden & Huygens Eyepiece. Aberration: Spherical Aberration-Derivation - reduction in spherical aberration BSA: 6.1, 6.2, 6.2.1 to 6.2.3, 10.10, 10.11 BSA: 9.2,9.3,9.4,9.5- 9.5.1,9.6,9.10,9.11,9.12,9.13(1) (2) Interference: Interference in thin films, Fringes in Wedge shaped films-Application-antireflection coating Diffraction: Fresnel's diffraction: Introduction, Huygens's -Fresnel's theory, Fresnel's assumptions, Distinction between interference and diffraction, Fresnel and Fraunhofer types of	

		diffraction, Half period zones, Diffraction due to single edge-Intensity profile on screen, Diffraction due to narrow wire. BSA : 15.1, 15.2.1 to 15.2.5, 15.3, 15.5, 15.6.1, 15.6.2 BSA : 17.1, 17.2, 17.3, 17.6, 17.7, 17.10, 17.10.1, 17.10.2, 17.11, 17.12, 18.1, 18.2, 18.2.1, 18.4, 18.4.2, 18.7, 18.7.1, 18.7.2, 18.7.8(i to vi)	
Unit III	III	Thermodynamics	15 lectures
		Review Zeroth law of Thermodynamics; Concept of Heat; First law of Thermodynamics. Nonadiabatic process & Heat as a path function Internal energy; Heat capacity & specific heat Application of first law to simple processes General Relations from the first law; Indicator diagrams BSH: 2.1 to 2.12, 4.1 to 4.14 Clausius theorem, Entropy, Entropy of a cyclic process Reversible process, Entropy change, Reversible heat transfer, Principle of increase in entropy, generalized form of first and second law, entropy change of an ideal gas. (ABG-HR): 7.9, 7.10, 7.11, 7.12, 7.12.1, 7.12.2, 7.13, 7.14, 7.14.1, 7.14.3, 7.15, 7.16, 7.17	

References:

- Fundamental of Physics (extended) Halliday, Resnick & Walker (HRW) (6th ed.) part I
- 2. Mechanics by Hans & Puri (HP)
- 3. Mechanics and thermodynamics-Ghosh and basavraju (GB)
- 4. A textbook of Optics by Brijlal, Subramanyam & Avadhanulu (BSA)
- 5. Optics -Jenkins and white (JW)
- 6. Heat, Thermodynamics & Statistical Physics by Brijlal, Subramanyam & Hemne (BSH)
- 7. Thermal Physics, AB Gupta and H. Roy, Book and Allied (P) Ltd, Reprint 2008, 2009 (ABG-HR)

Additional References:

- 1. Mechanics Concepts of Physics by H. C Verma (Vol. 1) (HCV)
- 2. Classical Dynamics by Thornton & Marion (5th Ed)
- 3. Optics by C. L Arora
- 4. Ref. Jenkins and white-Optics

- 5. Fundamentals of Optics Khanna and Gulati
- 6. Principles of Optics B. K. Mathur and T. P. Pandya (3rd Ed.)
- 7. Heat & Thermodynamics by M. W Zemansky & R. H Dittman
- 8. Basic Thermodynamics by Evylen Guha
- 9. Theory and Experiments on Thermal Physics D. K. Chakrabarti (2006 Ed)
- 10. Thermal Physics -Sears and Zeemansky

Course Title: Nuclear Physics & Quantum Mechanics Academic year 2021-22

Learning Objectives: After successful completion of this course, students would acquire the following knowledge & skills:

- (1) The ability to apply the principles of physics to solve innovative and unfamiliar problems
- (2) The ability to explore and deduce quantitative results in the extents of physics
- (3) The ability to use contemporary experimental apparatus and analysis tools to acquire, analyze and interpret scientific data
- (4) The ability to apply knowledge in Nuclear Physics, Modern Physics and Quantum Mechanics and communicate scientific results effectively in presentations or posters
- (5) A comprehensive, quantitative, and conceptual understanding of the core areas of Nuclear Physics, Modern physics, Quantum Mechanics at a level attuned with graduate programs in physics at peer institutions

Learning Outcomes:

After successful completion of the course, the student will be able to:

- 1. Understand basic knowledge about Nucleus.
- 2. Identify practical methods for the detection of specific types of nuclear particles, by taking into account various interactions of the particles with matter
- 3. Acquire knowledge of the Radioactivity Phenomenon, distinguish between different types of equilibria associated and its application to the abundance of radioactive species in nature.
- 4. Explore possibility of practical application of radioactivity in the fields of Agriculture, medicine, food.
- 5. Evaluate energy involved in endothermic and exothermic Nuclear reactions and practical exploitation of fission energy for the society. And further interest of scientific community in the research on Nuclear Fusion.
- 6. Understand the concepts of physical significance of wavefunction and its properties.
- 7. Formulate an expression for Schrodinger's time dependent wave equation and time independent wave function.
- 8. Distinguish between wave equation and Schrodinger's wave equation to find out transition from classical Physics to Quantum Physics in order to explain physics at the level of atom.

DETAILED SYLLABUS- RUSPHY102

Course	Unit	Title	Credits/
Code			lectures
RUSPHY102		Nuclear Physics & Quantum Mechanics	2 credits
Unit I	I	Nuclear Physics	15 lectures
		Rutherford's α-scattering experiment for estimation of nuclear size, Measurement of Nuclear radius – Hofstadter's experiment. SBP: 4.1.1, 4.1.2 Review -Radioactive Decay, Laws of Radioactive growth & decay, half-life, mean life, units of radioactivity. successive disintegration, radioactive equilibrium (Ideal, Secular & Transient Equilibrium), Determination of age of Earth. Radioactive series, Carbon Dating, Radioactive Isotopes and its applications in Medicine, Food & Agriculture, Industry, Archaeological Field. SBP: 2.1, 2.2, 2.3, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13 IK: 10.1, 10.2 AB: 12.1, 12.2 Interaction between particles and matter-Compton Effect, Ionization chamber, Proportional counter and GM counter, problems SBP: 1.1.2, 1.1.3 (I & ii); IK: 2.8; BSS: 9.13, 9.14 Nuclear Reactions: Types of Reactions and Conservation Laws. Concept of Compound and Direct Reaction, Q value equation and solution of the Q equation, problems SBP: 3.1 to 3.5; SBS: 3.3, 3.4, 3.5; 11.2, 11.3, 11.5, 11.6	
Unit II	II	Modern Physics	15 lectures
		Review- Quantum Theory: Black-body Radiation. Stefan-Boltzmann 'law, Wave particle Duality, de-Broglie Waves Experimental Verification of de-Broglie Waves, (G. P Thomson Experiment)-Numericals Heisenberg's Uncertainty Principle, Different forms of Uncertainty principle, Applications of Uncertainty	

Unit III	III	Principleproblems, Heisenberg's Uncertainty Principle (with thought experiments e.g. γ-ray microscope, electron diffraction experiment.) SBS: 2.1 to 2.5, 3.1 to 3.6, 3.9 X-Rays: Production (Coolidge tube), Continuous & Characteristics of x-ray spectra, x-ray diffraction (Laue's diffraction pattern) Bragg's Law, Bragg's x-ray spectrometer, Properties & Applications of x-rays problems SBS: 6.1, 6.2, 6.3, 6.4; AB: 2.5, 2.6 XRD pattern analysis SK -7.5.6 Introduction to Quantum Mechanics	15 lectures
		Concept of wave packet, phase velocity, group velocity and relation between them. Physical interpretation of wave function – Max Born Interpretation of wave function. Requirements of Schrodinger's wave function: Schrodinger's time dependent wave equation and time independent wave function (Steady State), Postulates of quantum mechanics. AB: 2.2, 2.3, 3.1, 3.2, 3.3, 3.4 MJ: 4.3, 4.4, 4.5, 5.1, 5.2, 5.3 and numericals from chapter 1, 4 and 5 GA: 2.1 to 2.10 Analogy between wave equation and Schrodinger's wave equation. (comparing with optics) Linearity and Superposition, Problems from all topics MJ: 4.3, 4.4, 4.5, 5.1, 5.2, 5.3 and numerical from chapter 1, 4 and 5	10 leotures

References

- 1. Nuclear Physics ,An Introduction- S. B Patel (SBP)
- 2. Concepts of Modern Physics by Arthur Beiser (AB)
- 3. Nuclear Physics-Irvin Kaplan (IK)
- 4. Atomic and Nuclear Physics N Subramanyam, Brijlal & Seshan (SBS)
- 5. Nano technology-Principles and Practices--Sulabha Kulkarni (SK)
- 6. Quantum Mechanics by G. Arul Das (GA)
- 7. Quantum Mechanics: A text book for undergraduates by Mahesh Jain (MJ)

Additional References:

- 1. Atomic Physics by S. N Ghoshal
- 2. Nuclear Physics by S. N Ghoshal
- 3. Atomic and Nuclear Physics A. B. Gupta and Deepak Ghosh
- 4. Basic Quantum Mechanics by Ajoy Ghatak
- 5. Elements of x-ray diffraction by B. D Cullity.

	SEM-I PRACTICALS	
	Skill Experiments: 1. Absolute and Relative Error Calculation 2. Graph Plotting 3. Use of Digital Multimeter 4. Use of Screw Gauge, Vernier Calipers, 5. Use of Travelling Microscope	
	6. Spectrometer (Schuster's Method)	8
	Regular Experiments: Group A	Credit 1
	Torsional oscillations	
	2. Y by vibration	
	3. Thermistor Characteristics	
	Helmholtz Resonator	
	5. J by Electrical method	
	6. η by Poiseuille's' s method	
	Regular Experiments: Group B	Credit 1
	Frequency of A.C. Mains	
	Spectrometer (Angle of Prism)	
	Combination of lenses	
	Newton's ring / Wedge shaped film	
	5. NAND, NOR gates as Universal Building Blocks	
	6. EX-OR gate, Half Adder & Full Adder	
691111	Any one out of the following is equivalent to two experiments from Group A and/or Group B 1. Student should carry out mini-project up to the satisfaction of the Professor or In-Charge of the Practical 2. Study Tour: Students participated in study tour must submit a study tour report Minimum 10 experiments (5 from each group) from the list should be completed in the first semester All 6 skill experiments are to be reported in the Journal Certified Journal is a MUST for a candidate to be eligible in the end semester practical examination. Internal component of Practical examination Evaluation is based on regular experiments and skill experiments. For External practical examination, student will be examined in 2 regular experiments (one from each group).	

MODALITY OF ASSESSMENT -SEM-I

Theory Examination Pattern:

A) Internal Assessment – (40% of 100 marks) = 40 marks.

Theory Paper- Paper code	Internal test marks	Assignment	Marks distribution	Total Marks per paper
Mechanics, Optics &Thermodynamics RUSPHY101	20	15 questions on units1,2,3	Assessment- 15 Viva on it05 Total= 20 mark	40
Nuclear Physics & Quantum Mechanics RUSPHY102	20	15 questions on units1,2,3	Assessment- 15 Viva on it05 Total= 20 mark	40

B) Internal test pattern (half an hour test)

Questions	options	Marks
Q.1	20 objective questions, all compulsory, each question with 4 options	10
	(half mark each)	
Q.2	Attempt any two numerical out of four.(3 marks each)	06
Q.3	Attempt any one numerical out of two.(4 marks each)	04
	Total marks	20

C) External examination - 60 % of 100 marks = 60 marks Semester-end Theory Assessment - 60 marks

- 1. Duration These examinations shall be of **2 hours** duration.
- 2. Paper Pattern: All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions on
Q.1)A)	Any 2 out of 4	14	Unit I
Q.1)B)	Any 1 out of 2	01	
Q.2)A)	Any 2 out of 4	14	Unit II
Q.2)B)	Any 1 out of 2	01	
Q.3)A)	Any 2 out of 4	14	Unit III
Q.3)B)	Any 1 out of 2	01	
Q.4)A)	Any 1 out of 2	5	Unit I
Q.4)B)	Any 1 out of 2	5	Unit II
Q.4)C)	Any 1 out of 2	5	Unit III
Total marks		60	

Practical Examination Pattern:

(A) Internal Examination:

Sr. No.	Activity	Practical-Group-A (Marks)	Practical-Group-B (Marks)
1.	Continuous Assessment	12	12
	(1.5 marks per experiment/ 5		
	regular and 3 skill experiment)		
2.	Main Journal	8	8
	(one mark per experiment for 5		
	regular and 3 skill experiment)		
	Total (= 1 + 2)	20	20
	Skill experiments= 06 for certified jour	rnal	
	Main experiments = minimum 10 for o	certified Journal per Sen	nester
	(5 each from experiment group A and	B)	

(B) External (Semester-end practical examination):

Sr. No.	Particulars	Practical-Group-A (Marks)	Practical-Group-B (Marks)
1.	Laboratory work	25	25
2.	Viva	5	5
	Total (= 1 + 2)	30	30

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/Practical- In charge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern- Semester

ı

Course	RUSPHY101 (Marks)			RUSPHY102 (Marks)			Total (Marks)
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical	20	30	50	20	30	50	100

(GRAND TOTAL MARKS: 300)

Course Title: Mathematical Physics & Mechanics

Academic year 2021-22

Learning Objectives: After successful completion of this course, students would acquire the following knowledge & skills:

- 1. The ability to apply the principles of physics to solve innovative and unfamiliar problems
- 2. The ability to explore and deduce quantitative results in the extents of physics
- 3. The ability to use contemporary experimental apparatus and analysis tools to acquire, analyze and interpret scientific data
- 4. The ability to communicate scientific results effectively in presentations or posters
- 5. Able to assimilate the fundamental of mathematical Physics.
- 6. Student can exercise the application of mathematical physics in realizing the various concept of physics.
- 7. A comprehensive, quantitative and conceptual understanding of the core areas of 'physics, including mechanics, optics, modern physics, thermodynamics, electrostatics at a level attuned with graduate programs in physics at peer institutions.

Learning Outcomes:

After successful completion of this course, student will be able to:

- 1. Recognise the basic mathematical concepts of vector calculus and implementation of them in physical situations.
- 2. Understand physical significance of various concepts such as gradient, curl and divergence.
- 3. Evaluating differential equations and its application to Transient response of electrical circuits.
- 4. Understand basics of Wave Motion, illustrate the application of Lissajous figures on CRO.
- 5. Differentiate between Travelling & Standing waves on a string and Normal modes of vibrations.
- 6. Demonstrate quantitative problem solving skills in all the topics covered.

DETAILED SYLLABUS- RUSPHY201

Course	Unit	Title	Credits/
Code			lectures
RUSPHY201		Mathematical Physics & Mechanics	2 credits
Unit I	I	Vector algebra and Vector calculus	15 lectures
		Review- Vector algebra, Laws of Vector algebra, Unit vector, Rectangular unit vectors, Components of a vector.	SE
		Scalar fields, Vector fields, Dot or Scalar product, Cross or Vector product, Commutative and Distributive Laws Scalar Triple product, Vector Triple product (proofs) Applications based on Dot, Cross and Triple products RefMS: Ch. 1, 2(Omit Reciprocal sets of vectors)	,
		Gradient, divergence and curl: The ∇ operator, Definitions and physical significance of Gradient, Divergence and Curl of a vector, Distributive Laws for Gradient, Divergence and Curl (Omit proofs)	
Unit II	II	Differential equations and Transient response of circuits	15 lectures
08/11	913	Review-{Introduction, Ordinary differential equations} First order homogeneous, First order non-homogeneous equations with variable coefficients, exact differentials, General first order Linear Differential Equation. Second-order homogeneous and Non-homogenous equations with constant coefficients. Transient response of circuits: Series LR, CR, LCR circuits. Growth and decay of currents/charge CR-Theory, Numerical CR:14.1, 14.2, 14.3, CH: 5.1, 5.2, 5.2.1 (A, B, C) (Omit D), 5.2.3	
Unit III	III	Harmonic Oscillations and Wave Motion Review-{Composition of two Collinear Harmonic Oscillations- Linearity & Superposition Principle} Superposition of two Collinear Oscillations having (i) equal frequencies, and (ii) different frequencies (Beats)	15 lectures

Superposition of two mutually perpendicular harmonic oscillations: Graphical & Analytical methods, Lissajous figures with equal & unequal frequencies; its uses

Wave Motion: Transverse waves on string-differential wave equation, velocity expression Review-Travelling & Standing waves on a string, Normal modes of a string.

Group velocity, Phase Velocity-Dispersive medium and non-dispersive medium-relation SPP: 2.4.1, 2.4.3, 2.4.4, 2.4.1, 2.3.4 FC: 1.5

Introduction to Ultrasonics-Generation of ultrasonics and one lecture for Applications.

References:

- 1. Schaum's outline of Theory and problems of Vector Analysis Murray Spiegel (MS)
- Schaum's outline Vector Analysis and introduction to tensor Analysis Murray Spiegel (MS) -
- 3. Electricity and Magnetism by D. Chattopadhaya & P. C. Rakshit (CR)
- 4. Fundamentals of Vibrations & Strings by S. P Puri (SPP)
- 5. Berkeley Physics Course, vol. 3, Francis Crawford (FC)
- 6. Fundamentals and applications of ultrasonic waves- Cheeke J., David N(CD)
- 7. Ultrasonics- Methods and Applications by Blitz (B)

Ref.- CD

Additional References:

- 1. Mathematical Methods in the Physical Sciences -Mary boas
- 2. The Physics of Vibrations and Waves, H. J. Pain, 2013, John Wiley and Sons.
- 3. The Physics of Waves and Oscillations, N.K. Bajaj, 1998, Tata McGraw Hill.
- 4. Additional References:
- 5. BrijLal,N. Subrahmanyam, JivanSeshan, Mechanics and Electrodynamics, , (S. Chand) (Revised & Enlarged ED. 2005)
- 6. A K Ghatak, Chua, Mathematical Physics, 1995, Macmillan India Ltd.
- 7. Ken Riley, Michael Hobsonand Stephen Bence, Mathematical Methods for Physics and Engineering, Cambridge (Indian edition).
- 8. H. K. Dass, Mathematical Physics, S. Chand & Co.
- 9. Jon Mathews & R. L. Walker, Mathematical Methods of Physics: W A Benjamin Inc

Course Title: Electronics

Academic year 2021-22

Learning Objectives: After successful completion of this course, students would acquire the following knowledge & skills:

- 1. The ability to apply the principles of physics to solve innovative and unfamiliar problems
- 2. The ability to explore and deduce quantitative results in the extents of physics
- 3. The ability to use contemporary experimental apparatus and analysis tools to acquire, analyze and interpret scientific data
- 4. The ability to communicate scientific results effectively in presentations or posters
- 5. A comprehensive, quantitative and conceptual understanding of the core areas of physics, including mechanics, optics, modern physics, thermodynamics, electrostatics at a level attuned with graduate programs in physics at peer institutions

Learning Outcomes:

After successful completion of this course, a student will be able to:

- 1. Understand the basic concepts of electrical circuit theorems, its applications at various levels and basic concepts of working of alternating current circuits.
- 2. Understand the working of electronic equipment -rectifier
- 3. Understand the conversion from among various number system viz decimal, Binary and hexadecimal and difference between digital and analog system.
- 4. Understand the working of digital electronic equipment such digital sensors and adder using logic gates etc.
- 5. Able to understand the construction and working of bipolar transistor.
- 6. Designing for the desired biasing of the transistor.
- 7. Demonstration qualitative problem-solving skills in the topics covered.

DETAILED SYLLABUS-RUSPHY202

Course	Unit	Title	Credits/
Code			lectures
RUSPHY202		Electronics	2 credits
Unit I	I	Circuit theorems, Rectifier, Alternating Current	15
		theory	lectures
		Circuit theorems: -Thevenin theorem, Norton theorem, Reciprocity theorem, Maximum power transfer theorem. CR: 7.7, 7.8, 7.9, 7.10, 7.11 Bridge rectifier: Efficiency and Ripple factor of Full wave Rectifier, capacitor filter, LC filter, Pi-Filter, Zener diode as voltage stabilizer VKM: 9.10 to 9.20, 9.22, 9.2 Alternating Current: Review-{Sinusoidal AC response of a Resistance, Inductance and a capacitance, Representation of sinusoids by complex numbers} sinusoidal voltage to series RL circuit, sinusoidal voltage series RC circuit, sinusoidal voltage to series RLC circuit, Series and parallel resonance. CR: 15.1, 15.2, 15.5, 15.6, 15.7, 15.8, 15.9, 15.11	20
Unit II	II	Digital and Analog electronics	15
			lectures
23/1/2		Review - Logic Gates-AND,OR,NOT,NOR,NAND,EX-OR Implementation of basic gates using NAND & NOR gates and their applications VKM: 28.8 to 28.14, 28.19, LMS: 6.7 binary addition and subtraction Half Adder, Full adder Decimal, binary, hexadecimal number system and their mutual conversions. LMS-5.2 to 5.5, 5.7 Transistor as an amplifier: Definition of gain α, β (dc & ac gains) and relation between them. CE amplifier: operation, dc and ac-Load line Analysis, operating point, cut off and saturation points VKM: 11.7 to 11.17, 11.21 Operational Amplifiers: Introduction, Schematic symbol of OPAMP, Output voltage from OPAMP, Inverting Amplifier, Non-Inverting Amplifier, Voltage Follower M M:	
			45
Unit III	III	Analog Electronics-Transistor Biasing.	15

Inherent Variations of Transistor Parameters,
Stabilization-
Essentials of a Transistor Biasing Circuit, Stability
Factor, Methods of Transistor Biasing:
Base Resistor Method, Emitter Bias Circuit, Circuit
analysis of Emitter Bias,
Biasing with Collector Feedback Resistor, Voltage
Divider Bias Method,
Stability factor for Potential Divider Bias.
MM: 9.2 to 9.13
Practical circuit of transistor amplifier, phase reversal,
frequency response, Decibel gain and Band width
MM: 13.4, 13.5

References:

- 1. Principles of Electronics V. K. Mehta & Rohit Mehta (VKM)
- 2. Electricity and Magnetism by D. Chattopadhaya & P. C. Rakshit (CR)
- 3. Digital Principles and Applications Leach & Malvino Goutam Saha(LM)(13th ed)
- 4. Principles of Electronics V. K. Mehta and Rohit Mehta. (S. Chand Multi-colored illustrative edition) (MM)

Additional References:

- 1. Digital Principles and Applications by Leach & Malvino
- 2. Digital Electronics by Tolkheim

		SEM-II PRACTICALS	
0.3/1/2	2. 3. 4. 5. 6.	Demonstration Experiments: Use of Cathode Ray Oscilloscope (or Digital Storage Oscilloscope) Conservation of Angular Momentum Laser Beam Divergence, Intensity Charging Discharging of a Capacitor Use of PC for graph Plotting Light Dependent Switch Clipper & Clamper Circuits 6 minimum demo-experiments should be reported in journal	
		Regular Experiments: Group A	Credit 1
	1.	Zener diode as Regulator	
	2.	Surface Tension	
	3.	Spectrometer (Minimum Angle of deviation & μ)	
	4.	LDR Characteristics	
	5.	Verification of Stefan's law	

	PRACTICALS	
	Regular Experiments: Group B	Credit 1
1.	LR Circuit	
2.	CR Circuit	
3.	Thevenin's Theorem	
4.	Norton's Theorem	
5.	Bridge Rectifier – Load Regulation	
1. sa Pr 2. mi Mi fro se 6 i in Ce eli Int Ev ex Fo ex	iments from Group A and/or Group B Student should carry out mini-project up to the tisfaction of the Professor or In-Charge of the actical Study Tour: Students participated in study tour ust submit a study tour report nimum 10 experiments (5 from each group) of the list should be completed in the first mester minimum demo-experiments are to be reported the Journal ertified Journal is a MUST for a candidate to be gible in the end semester practical examination. The reference of the professor of the gible in the end semester practical examination aluation is based on regular experiments and skill periments, Journal work or External practical examination, student will be amined in 2 regular experiments (one from each pup).	

MODALITY OF ASSESSMENT -SEM-II

Theory Examination Pattern:

A) Internal Assessment – (40% of 100 marks) = 40 marks.

Theory Paper- Paper code	Internal test marks	Assignment	Marks distribution	Total Marks per paper
Mathematical Physics & Mechanics RUSPHY201	20	15 questions on units1,2,3	Assessment- 15 Viva on it05 Total= 20 mark	40
Electronics & Electricity RUSPHY202	20	15 questions on units1,2,3	Assessment- 15 Viva on it05 Total= 20 mark	40

B) Internal test pattern (half an hour test)

Questions	options	Marks
Q.1	20 objective questions, all compulsory, each question with 4 options; (half mark each)	10
Q.2	Attempt any two numerical out of four.(3 marks each)	06
Q.3	Attempt any one numerical out of two.(4 marks each)	04
	Total marks	20

C) External examination - 60 % of 100 marks = 60 Marks

Semester-end Theory Assessment - 60 Marks

- 1. Duration These examinations shall be of **2 hours** duration.
- 2. Paper Pattern: All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions on
Q.1)A)	Any 2 out of 4	14	Unit I
Q.1)B)	Any 1 out of 2	01	
Q.2)A)	Any 2 out of 4	14	Unit II
Q.2)B)	Any 1 out of 2	01	
Q.3)A)	Any 2 out of 4	14	Unit III
Q.3)B)	Any 1 out of 2	01	
Q.4)A)	Any 1 out of 2	5	Unit I
Q.4)B)	Any 1 out of 2	5	Unit II
Q.4)C)	Any 1 out of 2	5	Unit III
Total marks		60	

Practical Examination Pattern:

(A) Internal Examination:

Sr. No.	Activity	Practical-Group-A	Practical-Group-B			
		(Marks)	(Marks)			
1.	Continuous Assessment	12	12			
	(1.5 marks per experiment/ 5 regular					
	and 3 demo-experiment)					
2.	Main Journal	8	8			
	(one mark per experiment for 5 regular		-00			
	and 3 demo experiment)		11050			
	Total (= 1 + 2)	20	20			
			0,,			
	Demo- experiments= 06 for certified journ	nal				
	Main experiments = minimum 10 for certified Journal per Semester					
	(5 each from experiment group A and B)					

(B) External (Semester-end practical examination):

Sr. No.	Particulars	Practical-Group-A (Marks)	Practical-Group-B (Marks)
1.	Laboratory work	25	25
2.	Viva	5	5
	Total (= 1 + 2)	30	30

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/Practical In- charge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern Semester II

Course	RUSPHY 201 (Marks)				RUSPHY 2 (Marks)	Total (Marks)	
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

(GRAND TOTAL MARKS: 300)

S.P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for S.Y.B.Sc. SEM III & IV

Program: B.Sc. (Physics)

Program Code: RUSPHY

(Credit Based Semester and Grading System with effect from the academic year 2021-22)

Course Title: Mechanics and thermodynamics

Academic year 2021-22

Learning Outcomes:

After successful completion of this course, a student will be able to:

- 1. Understand the concepts of mechanics & properties of matter, how to apply them to problems
- 2. Comprehend the basic concepts of thermodynamics & its applications in physical situation
- 3. Learn about situations at low temperature
- 4. Demonstrate cautious problem solving skills in all above areas

DETAILED SYLLABUS

Course	Unit	Title	Credits/
Code		$O_{I_{i}}$	lectures
RUSPHY 301		Mechanics and thermodynamics	2 credits
Unit I	I	Mechanics	15 lectures
6900		Compound pendulum: Expression for period, maximum and minimum time period, centers of suspension and oscillations, reversible compound pendulum. Kater's reversible pendulum, Advantages of a compound pendulum over a simple pendulum; Problems from all topics HP: 9.1.1 (pages 279 to 289) Center of Mass, Motion of the Center of Mass, Linear momentum of a Particle, Linear momentum of a System of Particles, Linear momentum with respect to CM coordinate (i.e. shift of origin from Lab to CM), Conservation of Linear Momentum, Some Applications of the Momentum Principle, System of Variable Mass Halliday and Resnick -Physics part I 9.1, 9.2, 9.3, 9.4, 9.5, 9.6 Torque Acting on a Particle, Angular Momentum of a Particle, Angular Momentum of System of Particles, and total angular momentum with respect to CM coordinates. Conservation of Angular Momentum. Halliday and Resnick -Physics part I 12.1, 12.2, 12.3, 13.4 Oscillations, The Simple Harmonic Oscillator, Relation between Simple Harmonic Motion and Uniform Circular Motion, Two Body Oscillations, Damped Harmonic	

		Motion , Forced Oscillations and Resonance. Halliday and Resnick -Physics part I 15.1, 15.2, 15.6, 15.8, 15.9, 15.10	
Unit II	II	Thermal Physics	15 lectures
		(Review of Zeroeth and first law of thermodynamics) Heat engine, Carnot's cycle, Second law of Thermodynamics, Statement, Equivalence of Kelvin & Planck Statement, Carnot's Theorem, Reversible & Irreversible Process, Absolute scale of Temperature. ABG: 7.1,7.2,7.3,7.5, 7.5.1, 7.6, 7.7, 7.8 Clausius theorem, Entropy, Entropy of a cyclic process, Reversible process, Entropy change, Reversible heat transfer, Principle of increase in entropy, generalized form of first and second law, entropy change of an ideal gas, entropy of steam, entropy and unavailable energy, entropy and disorder, absolute entropy ABG: 7.9, 7.10, 7.11, 7.12, 7.12.1, 7.12.2, 7.13, 7.14, 7.14.1, 7.14.3, 7.15, 7.16, 7.17	
Unit III		Heat, Thermodynamics & Statistical Physics	15 lectures
		Third law of thermodynamics, Nernst heat theorem, Consequences of the third law, Maxwell's thermodynamic relations, Clausius – Clapeyron equation. ABG: 10.12, 10.12.1, 10.12.2 BS: 6.3, 6.11 Steam engine, Rankin cycle ABG: 11.2, 11.3 Low temp Physics: Different methods of liquefaction of gases, methods of freezing mixtures, Cooling by evaporation under reduced pressure, cooling by adiabatic expansion. BS: 7.1, 7.2, 7.3, 7.4 Joule - Thompson effect, JT effect of Van der Waal's gas, Liquefaction of helium, properties and uses of liquid Helium ABG: 10.2, 10.2.2, 10.6,10.6.1	

References:

Resnick and Halliday: Physics - I

Mechanics – H. S. Hans and S. P. Puri, Tata McGraw Hill (2nd ED.)

Thermal Physics, AB Gupta and H. Roy, Book and Allied (P) Ltd, Reprint 2008, 2009.

Heat thermodynamics and Statistical Physics, Brijlal, N. Subramanyam, P. S. Hemne, S. Chand, edition 2007.

Additional reference:

- a) Mechanics by K.R Symon
- b) Classical Dynamics of particles and systems by Thornton and Marian, (CENGAGE Learning)
- c) Basic Thermodynamics: Evelyn Guha (Narosa Publications)
- d) Classical mechanics by Kleppener, Kollenkov
- e) A treatise on heat: Meghanad Saha and BN Srivastava, 1969, India Press
- f) Mechanics and Electrodynamics Rev Edn. 2005 by Brijlal and Subramanyan and Jeevan Seshan
- g) Thermal Physics: Philip M. Morse (W.A. Benjamin Inc. New York)
- h) Heat & Thermodynamics: Robert and Miller (ELBS)

Course Title: Vector calculus, Analog and Digital Electronics

Academic year 2021-22

Learning Outcomes:

After successful completion of this course, a student will be able to:

- 1. Understand the basic concepts of mathematical physics and their applications in physical situations
- 2. Understand the basic laws of electrodynamics and be able to perform calculations using them
- 3. Understand the basics of transistor biasing, operational amplifiers, their applications
- 4. Understand the basic concepts of oscillators and be able to perform calculations using them
- 5. Demonstrate quantitative problem solving skill in all the topics covered

DETAILED SYLLABUS

Caa	11	T:41-	Cup dita/
Course	Unit	Title	Credits/
Code		.*(O)	lectures
RUSPHY 302		Vector calculus, Analog and Digital Electronics	2 credits
Unit I		Vector Calculus	15 lectures
		Line, Surface and Volume Integrals, The Fundamental Theorem of Calculus: The Fundamental Theorem of Gradient, The Fundamental Theorem of Divergence, The Fundamental Theorem of Curl (Statement and Geometrical interpretation is included, Proof of these theorems are omitted). Problems based on these theorems are required to be done. DG: 3.1, 3.2, 3.3, 3.4, 3.5 Curvilinear Coordinates: Spherical Coordinates, Cylindrical Coordinates DG: 4.1, 4.2	
Unit II		Analog Electronics	15 lectures
69,	II	Transistor Biasing, Inherent Variations of Transistor Parameters, Stabilization, Essentials of a Transistor Biasing Circuit, Stability Factor, Methods of Transistor Biasing, Base Resistor Method, Emitter Bias Circuit, Circuit analysis of Emitter Bias, Biasing with Collector Feedback Resistor, Voltage Divider Bias Method, Stability factor for Potential Divider Bias. MM: 9.2 to 9.13 General amplifier characteristics: Concept of amplification, amplifier notations, current gain, Voltage gain, power gain, input resistance, output resistance, general theory of	

Unit III		feedback, reasons for negative feedback, loop gain. AM: 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 17.1, 17.2, 17.3 SC: 9.3, 9.4 Practical circuit of transistor amplifier, phase reversal, frequency response, Decibel gain and Band width. MM: 13.4, 13.5 Analog and Digital Electronics	15 lectures
	III	Oscillators: Introduction, effect of positive feedback. Requirements for oscillations, phase shift oscillator, Wien Bridge Oscillator, Colpitt's oscillator, Hartley oscillator MM: 14.1 to 14.11, 14.13, 14.14. Operational Amplifiers: Introduction, Schematic symbol of OPAMP, Output voltage from OPAMP, AC analysis, Bandwidth of an OPAMP, Slew rate, Frequency Response of an OPAMP, OPAMP with Negative feedback, Inverting Amplifier, Non-Inverting Amplifier, Voltage Follower, Summing Amplifier, Applications of Summing amplifier, OPAMP Integrator and Differentiator, Critical frequency of Integrator, Comparator Digital Electronics Flip-flops and counters: R-S flip flops, Clocked R-S, D Flip flop, J K Master slave flip flop, counters: Synchronous and Asynchronous: 3 bit ripple up counter, mod-3. Digital Principles and Applications – Donald Leach, A Malvino, Goutam Saha (13th Edition): 8.1, 8.2,8.5, 8.8, 10.1 555 Timer: Block diagram, Monostable and Astable Operation Electronic Principles – A. P Malvino and D. J Bates (7th Ed.): 23.7, 23.8, 23.9	

References:

- 1. Introduction to Electrodynamics 3rd Ed by D.J. Griffith
- 2. Principles of Electronics V. K. Mehta and Rohit Mehta. (S. Chand Multi-colored illustrative edition)
- 3. Electronic devices and circuits An introduction Allan Mottershed (PHI Pvt. Ltd.– EEE Reprint 2013)

Course Title: Applied Physics – I

Academic year 2021-22

Learning Outcomes:

After successful completion of this course, a student will be able to:

- 1. Students will appreciate the role of Physics in 'interdisciplinary areas related to Materials, Nano-sciences, Bio-physics, Acoustics etc.
- 2. The learner will understand the scope of the subject in Industry & Research
- 3. Experimental learning opportunities will faster creative thinking.
- 4. Understand the importance of instrumentation in biological sciences.
- 5. Understanding the method for solving the numerical which based on above concepts.

DETAILED SYLLABUS

Course	Unit	Title	Credits/
Code			lectures
RUSPHY303		Applied Physics – I	2 credits
Unit I		Acoustics, Lasers and fiber optics	15 lectures
690		1) Acoustics of Buildings: Reverberation, Sabine's formula (without derivation) Absorption coefficient, Acoustics of Buildings, factors affecting Acoustics of Buildings, Sound distribution in an auditorium. Reference:— M. S.—5.9,5.10, 5.12,5.13,5.14, 5.15 2) Laser: Introduction, transition between Atomic energy states (without derivation), Principle of Laser, Properties of Laser, Helium—Neon Laser, Application of Laser, Holography. Reference:—SP-9.1 to 9.6, 9.10, 9.11 3) Fiber Optics: Light propagation through Fibers, Fiber Geometry, Internal reflection, Numerical Aperture, Step-Index and Graded-Index Fibers, Applications of Fibers. Reference: SP— 13.3, 13.5, 13.9	
Unit II		Biophysics	15 lectures
	II	Introduction, definition, History & scope of biophysics, biological fluids, physico-chemical properties, viscosity, surface tension, pH, osmosis, osmotic pressure. Diffusion, Ficks' laws of diffusion, dialysis, Cell is unit of life, fundamental understanding prokaryotic and eukaryotic cell structure and function, eukaryotic cell	

		membrane, Fundamentals of transport process through biological membrane, membrane channels. electrical properties of cell, Action potential, propagation of action potential, methods of measurement of action potential, Nernst equation, Golman equation, The Hodgkin-Huxely model of action potential, voltage clamp technique, Patch clamp technique, cell impedance and capacitance . Reference:- Biophysics-principles and techniques by M.A. Subramanian-MJP publishers-chapter3 and 8 full.	
Unit III		Materials – properties and applications	15 lectures
	III	Classification and selection of materials: Classification of materials, organic, inorganic and biological materials, semiconductor materials, current trends and advances in materials. Material structure and examination, selection of materials. Crystal geometry and structure: Crystals, single crystal, Whiskers, lattice point and space lattice. Unit cell, primitive cell, Atomic radius, Density of crystal, Direction lattice planes, Miller indices, Inter planar spacing, Crystal planes in cubic unit cell, common planes in simple cubic structure. Coordination number, Crystal growth. KK: CHAPTER 1(3 TO 9) KK CHAPTER 3 (1 TO 18, 33)	

References:

- Properties of matter and Acoustics R Murugeshan and K. Shivaprasath, S Chand & Co.Ltd. (2005-Ed
- 2. Modern Physics Concept and Applications Sanjeev Puri, Narosa Publication
- 3. Biophysics-principles and techniques by M.A. Subramanian-MJP publishers
- 4. Material Science S. K. Kakani and Amit Kakani, New Age International (P) Ltd. Reprint 2004 (**KK**)
- 5. Electronic Properties of Materials, Rolf E Hummel
- 6. Materials Science and Engineering: A First Course by V. Raghavan

Additional References:

- 1. Cellular and Molecular Biology: Concept and Experiment by Gerald Karp
- 2. The Cell: A Molecular Approach by Geoffery Cooper
- 3. Introductory Biophysics: Perspective on living state by James Claycomb
- 4. Medical Physiology by Guyton
- 5. Molecular Biology of Cell by Bruce Albert
- 6. Text Book of Biophysics by R N Roy

RUSPHYP03 – Physics Laboratory Course

The S.Y.B.Sc. Syllabus integrates the regular practical work with a series of demonstration and skill experiments. During the teaching and examination of Physics laboratory work, simple modifications of experimental parameters may be attempted. Attention should be given to basic skills of experimentation which include:

- i) Understanding relevant concepts
- ii) Planning of the experiments
- iii) Layout and adjustments of the equipment
- iv) Recording of observations and plotting of graphs
- v) Calculation of results and estimation of possible errors in the observation of results
- > Note: Exemption of two experiments from section A and / or B and / or C may be given if student carries out any one of the following activity.
 - Execute a mini project to the satisfaction of teacher in-charge of practical
- ➤ Each experiment will be of three hours' duration. Minimum 5 from each group A/B/C and in all minimum 15 experiments from three groups A+B+C must be reported in certified journal along with 9 skill experiments
- All the skill experiments are required to be completed compulsorily.
- Internal component of Practical examination Evaluation is based on regular experiments and skill experiments.
- ➤ A learner will be allowed to appear for the semester end practical examination only if he/she submits a certified journal of Physics (9 Skill experiments and 15 regular experiments for certified Journal)

For external practical examination, the learner will be examined in three experiments (one from each group)

each group)			
Skill		Skill-Group-A	
experiments	1.	Drawing of graph on Semi-logarithmic or Logarithmic Scale	
	2.	Radius of ball bearings (single pan balance)	
	3.	Spectrometer: mean µ of yellow doublet of mercury source.	
		Skill-Group-B	
	4.	Component testing: resistor, capacitor, diode, transistor on CRO	
	5.	Use of Digital Storage Oscilloscope (DSO)	
	6.	Wiring of a simple circuit on a Bread Board	
	5	Skill-Group-C	
	7.	Study of LT-Spice, free software for simulation of electronic circuits	
50.	8.	Using Eagle Software draw PCB pattern for Electronic circuit	
	9.	, , , , , , , , , , , , , , , , , , , ,	
		free software	
	1.	Y by bending(metal beam)	Credit
	2.	Flat spiral spring (Y)	1
	3.	Optical lever: determination of refractive index of glass (µ)	'
	4.	Resolving Power of telescope.	
	5.	Finding moment of inertia of flywheel	

RUSPHP03 (A)	6.	Determination of wavelength of He-Ne laser using grating	
	7.	Determination of refractive index of liquid by diode laser	
	1.	Figure of merit of a mirror galvanometer.	Credit
	2.	Common emitter transistor(NPN) amplifier	1
	3.	OpAmp: Inverting amplifier with different gains]
	4.	OpAmp: Non inverting amplifier with different gains	
RUSPHP03 (B)	5.	Passive low pass filter/high pass filter	
	6.	MS-JK flip-flop	
	7.	Transistorized Wien Bridge Oscillator	-
	1.	Standardization of pH meter	Credit
	2.	Surface tension of Biological fluid	1
	3.	Solar cell panel- study of Current-voltage characteristics]
	4.	Determination of thermal conductivity of bad conductor by Lee's Method	3
RUSPHP03 (C)	5.	Specific heat of a graphite	
	6.	Concept of beats	
	7.	Thermal relaxation time constant of a series bulb—	
	7.	checking with apparatus requirement	
		,70	
1			

- Advanced course in Practical Physics D. Chattopadhya, PC Rakshit & B Saha. (6th Edition) Book and Allied Pvt Ltd
- 2. B.Sc Practical Physics Harnam Singh S.Chand & Co. Ld. 2001
- 3. A test book of advanced practical PHYSICS _ SAMIR Kumar Ghosh, New Central Book Agency (3rd edition)
- 4. B.Sc. Practical Physics CL Arora (1st Edition) -2001 S. Chand and Co Ltd
- 5. Practical Physics CL Squires (3rd Edition) Cambridge University
- 6. University Practical Physics DC Tayal. Himalaya Publication
- 7. Advanced Practical Physics Worsnop &Flint.

MODALITY OF ASSESSMENT SEM---III

Theory Examination Pattern:

A) Internal Assessment (40% of 100 marks) = 40 marks.

Theory Paper- Paper code	Internal test marks	Assignment	Marks distribution	Total Marks per paper
Mechanics & Thermodynamics RUSPHY301	20	15 questions on units1,2,3	Assessment- 15 Viva on it05Total= 20 mark	40
Vector calculus, Analog and Digital Electronics RUSPHY302	20	15 questions on units1,2,3	Assessment- 15 Viva on it05 Total= 20 mark	40
Applied Physics- I RUSPHY303	20	15 questions on units1,2,3	Assessment- 15 Viva on it05 Total= 20 mark	40

B) Internal test pattern (half an hour test)

Questions	options	Marks
Q.1	20 objective questions, all compulsory, each question with 4 options;	10
	(half mark each)	
Q.2	Attempt any two numerical out of four.(3 marks each)	06
Q.3	Attempt any one numerical out of two.(4 marks each)	04
	Total marks	20

C) External examination - 60 % of 100 marks = 60 MARKS, Semester End Theory Question paper of 60 marks

- I. These examinations shall be of **2 hours** duration.
- II. Paper Pattern: All questions shall be compulsory with internal choice within.

Questions	Options	Marks	Questions on
Q.1)A)	Any 2 out of 4	14	Unit I
Q.1)B)	Any 1 out of 2	01	
Q.2)A)	Any 2 out of 4	14	Unit II
Q.2)B)	Any 1 out of 2	01	
Q.3)A)	Any 2 out of 4	14	Unit III
Q.3)B)	Any 1 out of 2	01	
Q.4)A)	Any 1 out of 2	5	Unit I

Q.4)B)	Any 1 out of 2	5	Unit II
Q.4)C)	Any 1 out of 2	5	Unit III
Total marks		60	

Practical Examination Pattern:

(A) Internal Examination:

Sr. No.	Activity	Practical- Group-A (Marks)	Practical- Group-B (Marks)	Practical- Group-C (Marks)
1.	Continuous Assessment (1.5 marks per experiment/ 5 regular and 3 skill experiment)	12	12	12
2.	Main Journal (one mark per experiment for 5 regular and 3 skill experiment)	8	8	8
	Total (=1 + 2) 9 Skill experiments required for certified	20	20	20
	15 Main experiments required for certifi			

(B) External (Semester-end practical examination):

Particulars	Practical-Group-A (Marks)	Practical-Group-B (Marks)	Practical-Group-C (Marks)
Laboratory work	25	25	25
Viva	5	5	5
Total	30	30	30

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination. In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head of the department / laboratory In-charge of the respective class by presenting working(rough) journal to the HOD. If the student did not present such lost certificate at the practical examination, he/she will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

Semester-III

Course	RUSPHY301			RUSPHY301 RUSPHY302		RUSPHY303			Total	
	(Marks)				(Marks) (Ma			(Marks	5)	(Marks)
	Internal	External	Total	Int.	Ext.	Total	Int.	Ext.	Total	
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150

(GRAND TOTAL MARKS= 450)

Course Title: Optics, Applied optics

Academic year 2021-22

Learning Outcomes:

After successful completion of this course, a student will be able to:

- Acquire knowledge of diffraction optical phenomenon and diffraction categories-Fresnel and Fraunhofer. Understand the concept of Huygens's half period zone and apply it for diffraction caused in various situations. Analyse mathematically diffraction patterns created by different optical devices.
- 2. Understand the basics of polarization, different methods of its production.
- 3. Demonstrate application of Polarisation in practical devices as half wave plate and quarter wave plate. Work out analysis of polarised light using polariser and wave plates and evaluate polarisation status of light beam
- 4. Understand concept of interference and its application in Michelson interferometers. And exploring evaluation of thickness of thin optical plate, refractive index change.
- 5. Principles of optics applied to develop fiber optic sensors, non-reflecting and high reflecting thin films, grating structure in optical fiber which are of immense use both in Research and Industry

Course	Unit	Title	Credits/
Code			lectures
RUSPHY 401		Optics, Applied optics	2 credits
Unit I	L	Interference in thin films ,	15
		Diffraction- Fresnel & Fraunhofer	lectures
6911		Interference: Interference in thin films, Fringes in Wedge shaped films, Problems SBA: 15.1, 15.2.1 to 15.2.5, 15.3, 15.5, 15.6.1, 15.6.2, 15.6.3 Fresnel's diffraction: Introduction, Huygens's -Fresnel's theory, Fresnel's assumptions, Distinction between interference and diffraction, Fresnel and Fraunhofer types of diffraction, diffraction due to single edge, position of maximum and minimum intensity, intensity at a point inside a geometrical shadow, diffraction due to a narrow slit, diffraction due to narrow wire. Fraunhofer diffraction: introduction, Fraunhofer diffraction at a single slit, intensity distribution in diffraction pattern due to single slit, Fraunhofer diffraction due to double slit,	

Unit II	II	distinction between single slit and double slit diffraction patterns, plane diffraction grating, theory of plane transmission grating, width of principal maxima, prism and grating spectra. SBA: 17.1, 17.2, 17.3, 17.6, 17.7, 17.10, 17.10.1, 17.10.2, 17.11, 17.12, 18.1, 18.2, 18.2.1, 18.4, 18.4.2, 18.7, 18.7.1, 18.7.2, 18.7.8(i to vi) Polarization Types of polarization, Plane polarized light, circularly polarized light, Elliptically polarized light, Partially polarized light, Production of Plane polarized light, Polarization by reflection from dielectric surface, Polarization by refraction – pile of plates, Polarization by scattering, Polarization by selective Absorption, Polarization by double refraction, Polarizer and Analyser, Malus' Law, Anisotropic crystal, Calcite crystal, Optic Axis, Double refraction in calcite crystal, Huygens' explanation of double refraction, Ordinary and Extra ordinary rays, Positive and Negative crystals, Superposition of waves linearly polarized at right angles, Superposition of e-Ray and o-Ray, Retarders, Quarter wave plate, Half wave plate, Production of linearly polarized light, Production of elliptically polarized light, Production of circularly polarized light, Analysis of polarized light, Applications of polarized light. AG: 19.1, 19.2.1, 19.2.2, 19.2.3, 19.3, 19.4, 19.4.1, 19.5, 19.6.	15 lectures
Unit III	III	Applied Optics	15
			lectures
		Non-reflecting films (13.4 but not 13.4.1, 13.4.2), high reflectivity by thin film deposition (13.5), reflection by a periodic structure (13.6), Fiber –Bragg gratings (13.6.1) Newton's rings (13.10, Ex. 13.2,Ex. 13.3), Michelson interferometer (13.11) Self focusing phenomenon (16.11) Fiber optic sensors (24.14) Reference: AG	

- 1. A text book of Optics –Subramanyam, Brijlal, Avadhanulu (SBA)
- 2. OPTICS by Ajoy Ghatak-3rd edition, McGraw-Hill publications.

Additional References:

3. Fundamentals of Optics – Jenkins and White. (4th Ed) 2.Optics by C. L Arora

Course Title: Introduction to Quantum Mechanics Academic year 2021-22

Learning Outcomes:

- 1. After successful completion of this course, a student will be able to:
- **2.** Understand the postulates of quantum mechanics and to understand its importance in explaining significant phenomena in Physics
- 3. Demonstrate quantitative problem solving skills in all the topics covered
- **4.** Formulate the Schrodinger time independent and dependent equation and Derive equation of continuity with physical significance.
- 5. Understand the different operators and Commutator brackets in quantum mechanics.
- 6. Understand the application of Schrodinger steady state equation.
- 7. Understand the basics of infinite potential well and particle in cube.
- 8. Recognize barrier potential, tunneling effect, step potential and solutions to it.

Course	Unit	Title	Credits/
Code			lectures
RUSPHY 402		Introduction to Quantum Mechanics	2 credits
Unit I	I	Origin of Quantum Mechanics:	15 lectures
630		Historical Background: Review Black-body Radiation, Photoelectric effect, Matter waves –de Broglie Hypothesis, Wave-particle duality, Concept of wave packet, phase velocity, group velocity and relation between them. Heisenberg's Uncertainty Principle (with thought experiments e.g. γ-ray microscope, electron diffraction experiment) Different form of Uncertainty relation Physical interpretation of wave function – Max Born Interpretation of wave function, Requirements of wave function Schrodinger's Equation: Schrodinger's time dependent wave equation and time independent wave function (Steady State) Analogy between wave equation and Schrodinger's wave equation. Linearity and Superposition, Problems from all topics. Reference: AB: 2.2, 2.3, 3.1, 3.2, 3.3, 3.4 MJ: 4.3, 4.4, 4.5, 5.1, 5.2, 5.3 and numericals from chapter 1, 4 and 5 GA: 2.1 to 2.10	

Unit II	II	Quantum Mechanics	15 lectures
		Probability current density, equation of continuity, and its physical significance Definition of an operator, Eigen value and Eigen function Operators in Quantum Mechanics –Position, Momentum, and total energy (Hamiltonian) operators Basic Commutator Algebra in Quantum Mechanics Commutator brackets using position and momentum operators Expectation Values, Problems from all topics. Reference: SPS: 4.9 MJ: 6.1 to 6.8	300
Unit III	III	Applications of Schrodinger's Steady State Equation:	15 lectures
		Particle in an infinitely deep potential well (in detail – its relation with Heisenberg's uncertainty principle), Particle in a cube, Step potential, free particle, barrier potential and tunneling- infinitely deep potential well, concepts of cube, step potential, free particle, barrier potential and tunneling (no mathematical formulations required) Problems from all topics References: SPS: 5.1 to 5.6, 6.1 to 6.3 MJ: 6.9, 7.1 to 7.4 GA: 4.1 to 4.3	

- 1. Concepts of modern physics by Arthur Beiser (AB)
- 2. Quantum Mechanics: A text book for undergraduates by Mahesh Jain (MJ)
- 3. Quantum Mechanics by G. Arul Das
- 4. Quantum Mechanics (2nd edition) by H. C Verma Additional Reference
- 5. Quantum Mechanics by S. P Singh, M. K Bagade, Kamal Singh
- 6. Quantum Mechanics: A text book for undergraduates by Mahesh Jain

Additional References:

- 1. Basic Quantum Mechanics Ajoy Ghatak
- 2. Introduction to Quantum Mechanics by D. J Griffith
- 3. Introductory Quantum Mechanics (4th Edition) by R. Liboff
- 4. *The Feynman Lectures on Physics, Volume III* by Leighton, Feynman, and Sands (transcribed from a lecture series given by Richard Feynman at Caltech)
- 5. Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles 2nd Edition by Robert Eisberg, Robert Resnick
- 6. For problems of all units: 500 problems on Quantum Mechanics by G Aruldhas chapters 1, 2, 3, 4

Course Title: Applied Physics - II

Academic year 2021-22

Learning Outcomes:

After successful completion of this course, a student will be able to:

- 1. Students will appreciate the role of Physics in interdisciplinary areas related to Nanosciences, Nano-materials, Acoustics etc.
- The learner will understand the scope of the subject of Microprocessors.
- 3. The learner will understand the scope of Analysis Techniques used regularly in material science.
- 4. The learner will understand the scope of the subject in Industry & Research
- 5. Experimental learning opportunities will faster creative thinking

Course	Unit	Title	Credits/
Code			lectures
RUSPHY403		Applied Physics – II	2 credits
Unit I	I	Synthesis of Nano-materials	15 lectures
691		Synthesis of Nano-materials – Physical Methods: Introduction, Mechanical Methods – High Energy Ball Milling, Melt Mixing; Methods based on Evaporation – Physical, Vapor Deposition, Ionized cluster beam deposition, Ablation (laser vaporization), Laser Pyrolysis, Chemical Vapor Deposition SK: 3.1, 3.2. 3.2.1, 3.2.2, 3.3, 3.3.1, 3.3.2, 3.3.3, 3.3.4, 3.5 Synthesis of Nano-materials – Chemical Methods Introduction, Colloids & Colloids in Solution, Nucleation& Growth of Nanoparticles, Langmuir-Bodgett (LB) Method, Micro-emulsions, Sol-Gel Method SK: 4.1, 4.2, 4.3, 4.6, 4.7, 4.8 Synthesis of Nanomaterials – Biological Methods Introduction, Synthesis using Microorganisms, Synthesis using Plant extracts, Use of Proteins, Templates like DNA, S-Layers, etc., Synthesis of Nanoparticles using DNA SK: 5.1, 5.2, 5.3, 5.4, 5.5	
Unit II	II	Analysis Techniques	15 lectures

Unit III	III	Introduction, Microscopes, Electron Microscope – Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Diffraction Techniques – X-Ray Diffraction (XRD), Atomic Scattering Factor, Bragg's Law of Diffraction, Diffraction from different types of Samples. SK: 7.1, 7.2, 7.3, 7.3.1, 7.3.2, 7.5, 7.5.1, 7.5.2, 7.5.3, 7.5.4 Microprocessors	15 lectures
	'''	wiidi opi ocessors	13 lectures
		Programming Introduction, Historical Perspective, Organization of a Microprocessor Based system, how does the Microprocessor works, Machine Language, Assembly Language, High Level Languages, Writing and executing an Assembly Language Program. RG: 1.1, 1.1.2, 1.1.3, 1.2 (omit 1.2.4) 8085 Bus Organization, 8085 Programming Model, The 8085 Microprocessor, Pin connection diagram and function of each pin, A detailed look at 8085 Microprocessor. RG: 3.1.1, 2.1.1, 2.1.2, 4.1.1, 4.1.2, 4.1.3, 4.1.4, 4.1.5 Basic definitions: Instruction, Op-code, operand. Instruction word Size, instruction Format, data format, Addressing Modes, The 8085 Instruction Set(Classification) Data transfer Operations, Arithmetic Operations, Logical Operations Branch Operations, Introduction to Advanced Instructions Flowchart RG: 2.3.1, 2.3.2, 6.11, 2.11, 6.1, 7.2.1, 7.2.2, 7.3.3, 6.2, 7.2.4, 7.3.1, 6.3, 7.4, 7.5, 6.4, 9.2 (omit 9.2.1, 9.2.2), 9.3, 10.7, 6.1.2	

- 1. Sulabha Kukarni Nanotechnology Principles and Practices (SK)
- 2.Microprocessor Architecture, programming and Applications with 8085 Ramesh Gaonkar, 5th Edition, Prentice Hall of India (RG)

RUSPHYP03 – Physics Laboratory Course

The S.Y.B.Sc. Syllabus integrates the regular practical work with a series of demonstration and skill experiments. During the teaching and examination of Physics laboratory work, simple modifications of experimental parameters may be attempted. Attention should be given to basic skills of experimentation which include:

- vi) Understanding relevant concepts
- vii) Planning of the experiments
- viii) Layout and adjustments of the equipment
- ix) Recording of observations and plotting of graphs
- x) Calculation of results and estimation of possible errors in the observation of results
- Note: Exemption of two experiments from section A and / or B and / or C may be given if student carries out any one of the following activity.
 - Execute a mini project to the satisfaction of teacher in-charge of practical
- ➤ Each experiment will be of three hours' duration. Minimum 5 from each group A/B/C and in all minimum 15 experiments from three groups A+B+C must be reported in certified journal along with 9 demo experiments
- > All the demonstration experiments are required to be completed compulsorily.
- Internal component of Practical examination Evaluation is based on regular experiments and demo- experiments.
- A learner will be allowed to appear for the semester end practical examination only if he/she submits a certified journal of Physics (9 Demonstration experiments and 15 regular experiments for certified Journal)

 For external practical examination, the learner will be examined in three experiments (one from each group)

RUSPHP04		PRACTICALS-Group-A	1 credit
		Flat spiral spring (n)	
		Young's modulus by Koenig's method.	
		Optical fiber: transmission of signal	
		4. Brewster's/ Malus's law verification	
		5. R.P. of grating	
	- 1	6. Cylindrical obstacle: determination of λ	
		7. Single slit diffraction	
RUSPHP04		PRACTICALS- Group-B	1 credit
00		Determination of absolute capacitance using BG	
150		2. Measurement of resistance of galvanometer (G by shunting)	
		Transistorized Astable multivibrator -	
		4. Passive band pass filter.	
		5. CE amplifier: variation of gain with load	
		6. Colpitt's oscillator-	
		7. Op-Amp: Integrator and Differentiator-	

RUSPHP04	PRACTICALS- Group-C	1 credit
	Study of 8085 microprocessor kit and commands	
	8 -bit addition, subtraction and display	
	3. 8 -bit addition, subtraction with carry and display	
	4. 8 -bit multiplication	
	Memory block transfer from one location to another	.0
	6. Find largest/smallest number in given block.	50
	7. Arrange given number in ascending/descending order	50
	Demonstration Experiments:	
	Error Analysis and Concept of Beats	
	Study of stepper motor	
	Wave-form Generation using Op-amp	
	Double Refraction	
	5. Straight Edge Fresnel Diffraction	
	Hysteresis Experiment	
	7. Coupled Oscillations and Resonance	
	8. First Order Active Filter-LP and HP	
	9. PC simulation of 8085.	
	10. Use of DAD instruction in programming of 8085.	

- Advanced course in Practical Physics D. Chattopadhya, PC Rakshit & B Saha. (6th Edition) Book and Allied Pvt Ltd
- 2. B. Sc Practical Physics Harnam Singh S. Chand & Co. Ld. 2001
- 3. A test book of advanced practical PHYSICS _ SAMIR Kumar Ghosh, New Central Book Agency (3rd edition)
- 4. B.Sc. Practical Physics CL Arora (1st Edition) -2001 S. Chand and Co Ltd
- 5. Practical Physics CL Squires (3rd Edition) Cambridge University
- 6. University Practical Physics DC Tayal. Himalaya Publication
- 7. Advanced Practical Physics Worsnop &Flint.

MODALITY OF ASSESSMENT- SEM IV

Theory Examination Pattern:

A) Internal Assessment (40% of 100 Marks) = 40 Marks.

Theory Paper- Paper code	Internal test marks	Assignment	Marks distribution	Total Marks per paper
Optics, Applied optics RUSPHY401	20	15 questions on units1,2,3	Assessment- 15 Viva on it05 Total= 20 mark	40
Introduction to Quantum Mechanics RUSPHY402	20	15 questions on units1,2,3	Assessment- 15 Viva on it05 Total= 20 mark	40
Applied Physics- II RUSPHY403	20	15 questions on units1,2,3	Assessment- 15 Viva on it05 Total= 20 mark	40

B) Internal test pattern (half an hour test)

Questions	options	Marks
Q.1	20 objective questions, all compulsory, each question with 4 options; (half mark each)	10
Q.2	Attempt any two numerical out of four.(3 marks each)	06
Q.3	Attempt any one numerical out of two.(4 marks each)	04
	Total marks	20

C) External examination - 60 % of 100 marks = 60 Marks Semester End Theory Assessment - 60 marks

- I. Duration These examinations shall be of **2 hours** duration.
- II. Paper Pattern: All questions shall be compulsory with internal choice within.

Questions	Options	Marks	Questions on
Q.1)A)	Any 2 out of 4	14	Unit I
Q.1)B)	Any 1 out of 2	01	1000
Q.2)A)	Any 2 out of 4	14	Unit II
Q.2)B)	Any 1 out of 2	01	. 0),
Q.3)A)	Any 2 out of 4	14	Unit III
Q.3)B)	Any 1 out of 2	01	
Q.4)A)	Any 1 out of 2	5	Unit I
Q.4)B)	Any 1 out of 2	5	Unit II
Q.4)C)	Any 1 out of 2	5	Unit III
Total marks		60	

Practical Examination Pattern:

(A) Internal Examination:

Sr. No.	Activity	Practical- Group-A (Marks)	Practical- Group-B (Marks)	Practical- Group-C (Marks)
1.	Continuous Assessment (1.5 marks per experiment/ 5 regular and 3 demo experiment)	12	12	12
2.	Main Journal (one mark per experiment for 5 regular and 3 demo experiment)	8	8	8
	Total (=1 + 2)	20	20	20
	9 demo experiments required for certified 15 Main experiments required for certified			

(B) External (Semester-end practical examination):

Particulars	Practical-Group-A Practical-Group-A (Marks) (Marks)		Practical-Group-C (Marks)
Laboratory work	25	25	25
Viva	5	5	5
Total	30	30	30

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head of the department / laboratory In-charge of the respective class by presenting working(rough) journal to the HOD. If the student did not present such lost certificate at the practical examination, he/she will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

Semester IV

Course	RUSPHY401 (Marks)			R	USPHY4 (Marks)			JSPHY (Marks		Total (Marks)
	Internal	External	Total	Int.	Ext.	Total	Int.	Ext.	Total	
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150

(GRAND TOTAL MARKS= 450)

S.P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for T.Y.B.Sc. SEM V & VI

Program: B.Sc. (Physics)

Program Code: RUSPHY

(Credit Based Semester and Grading System with effect from the academic year 2021-22)

Course Title: Mathematical Methods in Physics, Thermal & Statistical

Physics

Academic year 2021-22

Learning Outcomes:

After successful completion of this course, a student will be able to:

- 1. Understand the scope of statistical concept for solving the equation of thermal mechanics.
- 2. Comprehend the basic concepts of mathematics & its applications in physical sciences
- 3. Evaluate the statistical relation by using the concepts of probability.
- 4. Demonstrate the thermo dynamical relations.
- 5. Understand the concepts of MB,BE and FD distribution.
- 6. Comparison of distribution
- 7. Understand the concepts by solving the numericals

			1
COURSE	11.24	×2)-	Credits/
CODE	Unit	TITLE	lectures
RUSPHY501		Mathematical Methods in Physics, Thermal & Statistical Physics	2.5 credits
		Probability	15 lectures
200		Review of basic concepts: sample space, events, independent events, conditional probability, probability theorems, permutations and combinations, discrete and continuous random variables, binomial distribution, joint distributions and covariance, the normal distribution, the Poisson distribution, statistics and experimental measurements, Chebyshev's inequality, law of large numbers, central limit theorem. MB: Chapter 15	
50.		Differential Equations	15 lectures
	II	Second-order non-homogeneous linear differential equations with constant coefficients: the method of successive integrations and the method of undetermined coefficients. Forced vibrations and resonance. The Laplace transform and its use in the solution of differential equations CH – Sections 5.2.4, 8.2.1, 8.2.2, 8.2.4 MB – Sections 8.6, 8.8 and 8.9	

		Fourier series: Introduction, Fourier cosine and sine series, Change of interval, Fourier Integral, Complex form of the Fourier series CH: 7.1, 7.1.1, 7.1.2, 7.1.3, 7.1.4, 7.2. Fourier transforms: Introduction, Formal development of the complex Fourier transform, Cosine and Sine transforms, The transforms of derivatives (with proof) CH: 8.1, 8.2.1, 8.2.2, 8.2.4, 8.2.5, 8.2.6	
		Statistical & Thermal Physics	15 lectures
I	III	Description of a system: Why statistical approach, Particle-states, System-states, Microstates and Macrostates of a system, Equilibrium and Fluctuations, Irreversibility, The equi-probability postulate, Statistical ensemble, Number of states accessible to a system, Phase space, Reversible processes. LG: 1.1 to 1.11 Thermal and Adiabatic Interactions: Thermal interaction, Canonical distribution, Energy fluctuations, Entropy of a system in a heat bath, Helmholtz free energy, Adiabatic interaction and enthalpy, General interaction and the first law of thermodynamics, Infinitesimal general interaction, Gibbs free energy, Phase transitions. LG: 2.1, 2.3 to 2.11	
		Statistical Mechanics and Quantum Statistics	15 lectures
IV.	V	Statistical Mechanics: Phase space, The probability of a distribution, The most probable distribution, Maxwell-Boltzmann statistics, Molecular speeds. AB: 15.1 to 15.5 Quantum Statistics: Bose-Einstein statistics, Black-body radiation, The Rayleigh-Jeans formula, The Planck radiation formula, Fermi-Dirac statistics, Comparison of results, Transition between states. AB: 16.1 to 16.7	

- 1. Mathematical Methods in the Physical Sciences Mary L. Boas (MB)
- 2. Introduction to Mathematical Physics Charlie Harper (CH)
- 3. Statistical & Thermal Physics by S. Lokanathan & R. S Gambhir (LG)
- 4. Perspectives of Modern Physics Arthur Beiser (AB)

Course Title: Solid State Physics

Academic year 2021-22

Learning Outcomes:

After successful completion of this course, a student will be able to:

- 1. Describe the various aspects related to crystal physics
- 2. Interpret Electrical properties of metals, Fermi-Dirac statistics and electronic distribution in solids, the Kronig- Penney model, Brillouin zones.
- 3. Describe conductivity related features of electrons and Holes in an Intrinsic Semiconductor, and Hall Effect
- 4. Describe Diamagnetism and Para-magnetism
- 5. Analyse Qualitative theory of the p-n junction, temperature dependence of p-n characteristics, Diode resistance
- 6. Describe phenomenon of Superconductivity and types, effects associated

COURSE	Unit	TITLE	Credits/ lectures
RUSPHY502		Solid State Physics	2.5 credits
690		Revision-Lattice points and space lattice, The basis and crystal structure, Unit Cells and lattice parameters, Primitive Cells. Crystal Systems, Crystal Symmetry, Bravais space lattices, Metallic crystal structures, Relation between the density of crystal material and lattice constant in a cubic lattice, Directions, Planes, Miller Indices, Important planes in simple cubic structure, separation between lattice planes in a cubic crystal, Reciprocal Lattice, X-ray Diffraction SOP: Ch. 4 Art – II, III, IV, V, VI, VII, XIV,XV, XVI, XVI	15 lectures
	II	Electrical properties of metals Electrical properties of metals: Classical free	15 lectures

	electron theory of metals, drawbacks of classical theory, Relaxation time, Collision time and mean free path, Quantum theory of free electrons, Fermi-Dirac statistics and electronic distribution in solids, Density of energy states and Fermi energy, Heat capacity of the electron gas, Mean energy of electron gas at 0 K SOP: Ch. 6 Art – I to V, XIV, XV, XVII, XVIII Band theory of solids, The Kronig- Penney model (Omit eq. 6.184 to 6.188), Brillouin zones, Number of wave functions in a band, Motion of electrons in a one-dimensional periodic potential, Distinction between metals, insulators and intrinsic semiconductors SOP: Ch. 6 Art – XXXVII, XXXVIII, XXXIX,XXXX, XXXXI	31188
III	Electrons and Holes in an Intrinsic Semiconductor, Conductivity, Carrier concentrations in an intrinsic semiconductor, Donor and Acceptor impurities, Charge densities in a semiconductor, Fermi level in extrinsic semiconductors, Diffusion, Carrier lifetime, The continuity equation, Hall Effect 2.Magnetic Properties of matter: Diamagnetism and Paramagnetism, The origin of permanent magnetic dipoles, Diamagnetism and Larmor precession, the static paramagnetic susceptibility D: 18.1 to 18.4	15 lectures

	Diode, magnetism and superconductivity	15 lectures
IV	Semiconductor-diode Characteristics: Qualitative theory of the p-n junction, the p-n junction as a diode, Band structure of an open-circuit p-n junction MH: 4.1 to 4.10; 5.1, 5.2, 5.3 The current components in a p-n junction diode, Quantitative theory of p-n diode currents, The Volt-Ampere characteristics, The temperature dependence of p-n characteristics, Diode resistance MH: 5.4 to 5.8 Superconductivity: survey, Mechanism of Superconductors, Effects of magnetic field, Critical Currents, The Meissner effect, the penetration depth, Type I and Type II Superconductors SOP: Chapter 8: II, III, IV, VI, VII, XII, XIII	

- 1. Solid State Physics: S. O. Pillai, New Age International. 6th Ed. (SOP)
- 2. Electronic Devices and Circuits: Millman, Halkias&Satyabrata Jit. (3rd Ed.) Tata McGraw Hill. (MH)
- 3. Solid State Physics: A. J. Dekker, Prentice Hall(D)

Course Title: Atomic & Molecular Physics

Academic year 2021-22

Learning Outcomes:

After successful completion of this course, a student will be able to:

- 1. Understand the basic mathematical concepts of vector calculus and applications of them in physical situations.
- 2. Understand the Schrödinger's equations and their application on hydrogen atom.
- 3. Understand the energy level diagrams using hydrogen atom and comprehend understanding of its quantum numbers.
- 4. Understand spin of an electron and its experimental proof with exclusive principle.
- 5. Understand the magnetic effect on the atom and their consequences using quantum and classical theories.
- 6. Understand the Molecular spectra and its effect on various energy levels using Raman effect
- 7. It enhances the knowledge of modern, quantum and classical aspects for the further studies.

COURSE	Unit	TITLE	Credits/ lectures
RUSPHY503		Atomic & Molecular Physics	2.5 credits
		Schrödinger's equation and Hydrogen atom	15 lectures
	9	Schrödinger's equation for Harmonic oscillator, its solution by operator method. Graphical representation of its energy level and wave functions. PTM: 5.2; AB: 8.7	
691		Hydrogen atom: Schrödinger's equation for Hydrogen atom, Separation of variables, Quantum Numbers: Total quantum number, Orbital quantum number ,Magnetic quantum number. Angular momentum, Electron probability density (Radial part) AB: 9.1 to 9.9	
		Electron Spin	15 lectures
	II	Electron Spin: The Stern-Gerlach experiment, Pauli's Exclusion Principle, Symmetric and Antisymmetric wave functions. AB: 10.1, 1.03 Spin orbit coupling, Hund's Rule, Total angular	

	momentum, Vector atom model, L-S and j-j coupling. Origin of spectral lines, Selection rules. AB:10.2,10.6,10.7, 10.8, 10.9; 11.1 and 11.2. Zeeman effect and Paschen-Back effect	15 lectures
III	Effect of Magnetic field on atoms, Zeeman effect, Earlier discoveries and developments, Experimental arrangement, The normal Zeeman effect and its explanation(Classical and Quantum) HSA: 9.14, 9.15 The Lande g factor, Anomalous Zeeman effect; Paschen-Back effect, Paschen-Back effect of principal series doublet, Selection rules for Paschen-Back effect. HEW: 9.16, 9.17, 10.7, 10.8, 10.9	00
	Molecular Spectra :	15 lectures
IV	Molecular Spectra (Diatomic Molecules): Rotational energy levels, Rotational spectra, Vibrational energy levels, Vibrational-Rotational spectra .Electronic Spectra of Diatomic molecules: The Born-Oppenheimer approximation, Intensity of vibrational-electronic spectra: The Franck-Condon principle. AB: 14.1, 14.3, 14.5, 14.7 BM: 6.11, 6.13 Raman Effect: Quantum Theory of Raman Effect, Classical theory of Raman Effect, Experimental Setup of Raman Effect, Applications of Raman Spectroscopy. BM: 4.1.1, 4.1.2	

- 1. Introduction to Quantum mechanics P. T Mathews (PTM)
- 2. Perspectives of Modern Physics Arthur Beiser (AB)
- 3. Introduction to Atomic & Nuclear Physics Henry Semat& J. R Albright (5th Ed) (**HSA**); Introduction to Atomic Spectra H. E White (**HEW**)
- 4. Fundamentals of Molecular Spectroscopy C. N Banwell& E. M McCash (BM)

Course Title: Electrodynamics

Academic year 2021-22

Learning Outcomes:

After successful completion of this course, a student will be able to:

- Understand the basic mathematical concepts of vector calculus and its applications of them in Electrodynamics
- 2. Understand the basic laws of electrodynamics and be able to perform calculations in the problems related to Physical situations.
- 3. Understand the penetration of electric and magnetic field in dielectric material and its practical applications
- 4. Acquired conceptual understanding of the Maxwell's laws and its quantitative interpretations.
- 5. Understand basics of electromagnetic waves and its propagation in material and practical applications in waveguide.
- 6. Understand Poynting theorem and its application in energy transport via electromagnetic waves.
- 7. It prepares student for the advanced study of electrodynamics with practical applications in communication, energy transport.

COURSE	Unit	TITLE	Credits/ lectures
RUSPHY504	1.(Electrodynamics	2.5 credits
.0		Electrostatics	15 lectures
RUSPHY504	I	Electric Field lines, Flux and Gauss' law, The divergence of E, Applications of Gauss' law, The curl of E. Introduction to potential, Comments on potential, Poisson's equation and Laplace's equation, The potential of a localized charge distribution, Review of Conductors & Faraday's Cage DG: 2.2.1 to 2.2.4, 2.3.1 to 2.3.4. Greiner-1.1,1.2,1.3 First Uniqueness theorem (Without proof), The classic image problem- Infinite conducting plane DG: 3.2.1 to 3.2.3. Greiner—chapter2-Green's theorems, Green's function,Ex2.1(Image charge problem)	

	Polarisation & Magnetostatics	15 lectures
II	Dielectrics, Induced Dipoles, Alignment of polar molecules, Polarization, Bound charges and their physical interpretation, Gauss' law in presence of dielectrics, A deceptive parallel, Susceptibility, Permittivity, Dielectric constant, Energy in dielectric systems. DG: 4.1.1 to 4.1.4, 4.2.1, 4.2.2, 4.3.1, 4.3.2, 4.4.1, 4.4.3. Straight-line currents, The Divergence and Curl of B, Applications of Ampere's law in the case of a long straight wire and a long solenoid, Comparison of Magneto-statics and Electrostatics. DG: 5.3.1 to 5.3.4.	
	Magnetism & Varying Fields	15 lectures
III	Magnetization, Bound currents and their physical interpretation, Ampere's law in magnetized materials, A deceptive parallel, Magnetic susceptibility and permeability. DG: 6.2.1, 6.2.2, 6.3.1, 6.3.2, 6.4.1. Energy in magnetic fields, Electrodynamics before Maxwell, Maxwell's correction to Ampere's law, Maxwell's equations, Magnetic charge, Maxwell's equations in matter, Boundary conditions. DG: 7.2.4, 7.3.1 to 7.3.6.	
	Electromagnetic Waves	15 lectures
IV	The continuity equation, Poynting's theorem, Newton's third law in electrodynamics. DG: 8.1.1, 8.1.2., 8.2.1. The wave equation for E and B, Monochromatic Plane waves, Energy and momentum in electromagnetic waves, Propagation in linear media, Reflection and transmission of EM waves at normal incidence, Electromagnetic waves in conductors, guided waveswave guides DG: 9.2.1 to 9.2.3, 9.3.1 to 9.3.2, 9.4.1, 9.5.1	

- 1. Introduction to Electrodynamics by David Griffith (3 rd edition)-Prentice hall of India (DG)
- 2. Introduction to Electrodynamics: A. Z. Capria and P. V. Panat.
- 3. Electricity and Magnetism: Navina Wadhwani

RUSPHYP05 – Physics Laboratory Course

The T. Y. B. Sc. Syllabus integrates the regular practical work with a series of demonstration and skill experiments. During the teaching and examination of Physics laboratory work, simple modifications of experimental parameters may be attempted. Attention should be given to basic skills of experimentation which include:

- xi) Understanding relevant concepts
- xii) Planning of the experiments
- xiii) Layout and adjustments of the equipment

- xiv) Recording of observations and plotting of graphs
- xv) Calculation of results and estimation of possible errors in the observation of results

Regular Physics Experiments: A minimum of 8 experiments from each of the course are to be performed and reported in the journal

Skill Experiments: All the 8 skills are compulsory and must be reported in the journal. Skills will be tested during the examination through viva or practical. The certified journal must contain a minimum of 16 regular experiments (8 from each group), with all 8 Skills in semester V.

A separate index and certificate in journal is must for each semester course. There will be two turns of three hours each for the examination of practical courses

- Internal component of Practical examination Evaluation is based on regular experiments and skill experiments.
- For external practical examination, the learner will be examined in two experiments (one from each group)
- A learner will be allowed to appear for the semester end practical examination only if he submits a certified journal of Physics

a certilled journ	iai c	л гнуб			
Skill		1.	Lateral shift removal on optical bench		
experiments		2.	Dual Trace CRO: Phase Shift Measurement.		
-		3.	Study of advanced Optics setup- Hologram making		
	Apparatus				
	4. BG: C1 /C2 by comparing θ1 / θ2				
	5. Use of electronic balance: Radius of a small ball bearing of				
		suitable another skill expt.			
		6.	Soldering technique		
		7.	Temperature and Pressure measurement-BMPSensor		
			and Arduino board, PC.		
		8.	Bread Board Circuit using three IC		
Group A		1.	Determination of g by Kater's Pendulum		
(RUSPHYP501)		2. •	Resolving power of prism		
(KOSFIIIF301)		3.	Diameter of Lycopodium Powder		
		4.	Goniometer		
		5.	Thermal Diffusivity of Brass		
		6.	Fresnel's bi-prism: determination of wavelength of sodium		
			yellow line.		
.0		7.	Diode as Temperature Sensor		
		8.	Hall Effect		
\mathcal{A}_{II}		9.	Hologram Making		
00		1.	Mutual Inductance by BG		
		2.	Hysteresis by Magnetometer		
		3.	Maxwell's Bridge		
Group B		4.	Curie-Weiss Law		
(RUSPHYP502)		5.	Band-gap Energy		
(1.00) 1111 302)		6.	Log Amplifier using OpAmp		
		7.	First Order Active High/Low Pass Filter		
		8.	Schmitt Trigger using OPAMP		
		9.	Wein Bridge Oscillator-OPAMP		

- 1. Advanced course in Practical Physics: D. Chattopadhya, PC. Rakshit& B. Saha (8th Edition) Book & Allied Pvt. Ltd.
- 2. BSc Practical Physics: Harnam Singh. S. Chand & Co. Ltd. 2001
- 3. A Text book of Practical Physics: Samir Kumar Ghosh New Central Book Agency (4rd edition)
- 4. B Sc. Practical Physics: C. L. Arora (1st Edition) 2001 S. Chand & Co. Ltd
- 5. Practical Physics: C. L. Squires (3rd Edition) Cambridge University Press.
- 6. University Practical Physics: D C Tayal. Himalaya Publication.
- 7. Advanced Practical Physics: Worsnop& Flint.
- 8. DSO -tektronics, Aplab manual CD.
- 9. Hologram –Holmark manual

MODALITY OF ASSESSMENT - SEM V

Theory Examination Pattern:-

A) Internal Assessment - 40% = 40 marks.

Theory Paper- Paper code	Test (Marks)	Assignment	Marks distribution	Total Marks per paper
Math. Methods of Physics, Thermal & Statistical Physics RUSPHY501	20	15 questions on units1,2,3	Assessment- 15 mark Viva on it05 mark Total= 20 mark	40
Solid State Physics RUSPHY502	20	15 questions on units1,2,3	Assessment- 15 mark Viva on it05 mark Total= 20 mark	40
Atomic & Molecular Physics RUSPHY503	20	15 questions on units1,2,3	Assessment- 15 mark Viva on it05 mark Total= 20 mark	40
Electrodynamics RUSPHY504	20	15 questions on units1,2,3	Assessment- 15 mark Viva on it05 mark Total= 20 mark	40

B) Internal test pattern (half an hour test)

Questions	options	Marks
Q.1	20 objective questions , all compulsory, each question with 4 options; (half mark each)	10
Q.2	Attempt any two numerical out of four.(3 marks each)	06
Q.3	Attempt any one numerical out of two.(4 marks each)	04
	Total marks	20

C) External examination - 60 % = 60 marks

Semester-end Theory Assessment - 60 marks

- 1. Duration These examinations shall be of 2 hours duration.
- 2. Paper Pattern:
 - I. There shall be **5** questions each of **12** marks. On each unit there will be one question & last question will be based on all the 4 units.
 - II. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions on
Q.1)A)	Any 1 out of 2	6	Unit I
Q.1)B)	Any 1 out of 2	6	
Q.2)A)	Any 1 out of 2	6	Unit II
Q.2)B)	Any 1 out of 2	6	
Q.3)A)	Any 1 out of 2	6	Unit III
Q.3)B)	Any 1 out of 2	6	
Q.4)A)	Any 1 out of 2	6	Unit IV
Q.4)B)	Any 1 out of 2	6	
Q.5)A)	Any 1 out of 2	3	Unit I
Q.5)B)	Any 1 out of 2	3	Unit II
Q.5C)	Any 1 out of 2	3	Unit III
Q.5)D)	Any 1 out of 2	3	Unit IV

Practical Examination Pattern:

(A) Internal Examination:

Sr.	Activity	Practical-	Practical-
No.		Group-A	Group-B
		(Marks)	(Marks)
1.	Seminar on experiment from each group:	8	8
	Content- 2 mark		
	Presentation-2 mark		
	Q(Teacher)2 mark		
	Q(Student) -2 mark		.0.
2.	Continuous Assessment (2 mark per experiment/ 8 regular	24	24
	and 4 skill experiment))		30
3.	Main Journal (1 mark per regular experiment)	8	8
	Total (1+2+3)	40	40
	Requirement for the certification		
	8 Skill experiments and 16 regular experiments		

(B) External (Semester end practical examination):

Particulars	Practical I (Marks)	Practical II(Marks)
Laboratory work	50	50
Viva	10	10
Total	60	60

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Coordinator / In-charge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern Semester V

Course	RI	RUSPHY501			SPHY	502	RUSPHY503		503	RUSPHY504			Total
	(Marks)			((Marks))	(Marks) (Marks)			s)	(Marks)		
	Int.	Ext.	Total	I	Е	Т	I	Е	Т	I	Е	T	
Theory	40	60	100	40	60	100	40	60	100	40	60	100	400

Course		RUSPHYP	501	RUSPHYP502			Total
		(Marks))	(Marks)			(Marks)
	Int.	Ext.	Total	Int.	Ext.	Total	
Practicals	40	60	100	40	60	100	200

(GRAND TOTAL MARKS: 600)

Course Title: Classical Mechanics Non Linear Mechanics Academic year 2021-22

Learning Outcomes:

After successful completion of this course, a student will be able to:

- 1. Understanding the modification of Newton's second law by using the concepts of gravitation
- 2. Study the anharmonic motion of particle and framing the relation for the same.
- 3. Understand formulation of mechanical problem in Lagrange's equations and concept of constraints
- 4. Application of D'Alembert's principle
- 5. Application of Lagrange's equations
- 6. Study conceptual numericals on Newton's second law by using the concepts of gravitation
- 7. Apply Lagrange's equations for interpreting physical concepts.

COURSE	Unit	TITLE	Credits/ lectures
RUSPHY601		Classical Mechanics& Non Linear Mechanics	2.5 credits
	ı	Central Force	15 lectures
	No	Motion under a central force, central force inversely proportional to the square of the distance, Elliptical orbits. The Kepler's problem. Hyperbolic Orbits: The Rutherford problem – Scattering cross section. KRS: Art. 3.13 to 3.16 Moving origin of co-ordinates, Rotating co-ordinate systems, Laws of motion on the rotating earth, Foucault pendulum, Larmor's theorem (with proof) KRS: Art. 7.1 to 7.5	
Ko.		Lagrange's equations	15 lectures
	II	Lagrange's equations: D'Alembert's principle, Generalized coordinates, Lagrange's equations using D'Alembert's principle, Examples, Systems subject to constraints, Examples of systems subject to constraints, Constants of motion and ignorable coordinates. KRS: Art. 9.1 to 9.6; G:1.4	
	III	Kinematics	15 lectures

	Kinematics of moving fluids, Equation of motion for an ideal fluid, Conservation laws for fluid motion, Steady flow. KRS: Art. 8.6 to 8.9 The rotation of a Rigid body: Motion of a rigid body in space, Euler's equations of motion for a rigid body, Euler's angles, Heavy symmetrical top (without notation). KRS: Art. 11.1, 11.2, 11.4, 11.5; BO: 6.7	2
	Non-linear mechanics	15 lectures
IV	Non-linear mechanics: Qualitative approach to chaos, The anharmonic oscillator, Numerical solution of Duffing's equation, Transition to chaos: Bifurcations and strange attractors, Aspects of chaotic behaviour. BO: Art. 11.1, 11.3 to 11.5	

- 1. Mechanics by Keith R. Symon (KRS)
- 2. Classical Mechanics A Modern Perspective by V. D Barger & M. S Olsson (BO)
- 3. Classical Mechanics by Herbert Goldstein (G)

Additional References:

- 1. An Introduction to Mechanics Daniel Kleppner& Robert Kolenkow
- 2. Chaotic Dynamics An Introduction Baker and Gollup

Course Title: Electronics

Academic year 2021-22

Learning Outcomes:

After successful completion of this course, a student will be able to:

- 1. Understand the basic electronic components FET, MOSFET, SCR and their working applications.
- 2. Understand the circuitry action for various applications.
- 3. Understand the selection and requirement of components on the basis of component characteristics for various applications.
- 4. Understand the theory and applied aspects of the IC- Op Amp and 555 Timer.
- 5. Understand the circuit assembling of various devices.
- 6. Understand DC power supply, Transistor Multivibrators, Logic families- flip-flops and counters
- 7. Understand Electronic communication techniques of modulations.

COURSE	Unit	TITLE	Credits/ lectures
		Electronics	2.5 credits
RUSPHY602	I	FET and SCR:	15 lectures
690		Field Effect Transistors: JFET: Basic ideas, Drain Curve, The trans-conductance curve, Biasing in the ohmic region and the active region, Trans-conductance, JFET common source amplifier, JFET analog switch, multiplexer, voltage controlled resistor, Current sourcing. MOSFET: Depletion and enhancement mode, MOSFET operation and characteristics, digital switching. Thyristors: SCR – Working, Equivalent circuit, important terms, I-V Characteristics, SCR as a switch, half wave rectifier and full wave rectifier. TRIAC: Construction, Operation, I-V Characteristics, Applications. DIAC: Construction, Operation, Characteristics and applications. 1. MB: Art. 13.1 to 13.9, 14.1, 14.2, 14.4, 14.6. 2. VKM: Art. 20.1 to 20.10, 21.1 to 21.6, 21.8, 21.9, 21.10. 3. VKM: Art 7.7 to 7.11. MB: 7.10.	

	II	Regulated DC power supply, Differential Amplifier and Transistor Multivibrators	15 lectures
		Regulated DC power supply: Supply characteristics, series voltage regulator, short circuit protection (current limit and fold back) Monolithic linear IC voltage regulators. (LM 78XX, LM 79XX, LM 317). Differential Amplifier using transistor: The Differential Amplifier, DC and AC analysis of a differential amplifier, Input characteristic-effect of input bias, Off-set current and input offset voltage on output, common mode gain, CMRR. Transistor Multivibrators: Astable, Monostable and Bistable Multivibrators, Schmitt trigger. 1. MB: Art 17.1 to 17.5. 2.KVR:Art. 14.5.2.1, 14.5.2.5, 14.5.2.6, 14.5.4.1. 3.MB: Art. 20.5, 20.8, 21.4, 22.7,22.8, 23.2. MH: 16.14	
	Ш	Operational Amplifier and 555 Timer	15 lectures
		Op Amp Applications: Log amplifier, Instrumentation amplifiers, Voltage controlled current sources (grounded load), First order Active filters, Astable using OP AMP, square wave and triangular wave generator using OPAMP, Wein-bridge oscillator using OP AMP. 555 Timer: Block diagram, Triggered linear ramp generator. 1. MB: Art. 23.7 to 23.9. 2. ML: Art. 6.2, 6.4, 6.6, 6.7, 7.2 to 7.4.	
	IV	Logic families	15 lectures
69/1		Logic families: Standard TTL NAND, TTL NOR, Open collector gates, Three state TTL devices, MOS inverters, CMOS NAND and NOR gates, CMOS characteristics. Applications of JK flip flop: Types of registers, 4-bit shift register (serial in-serial out), Asynchronous counters, 4-bit up-down counter, MOD-3, MOD-5, Decade counter, Shift counter. Electronic communication techniques: Radio broadcasting, Transmission and reception, Modulation, Amplitude modulation, Modulation factor, Analysis of amplitude modulated wave, Side band frequencies in AM wave, Transistor amplitude modulator, Power in AM wave, Limitations of AM, Frequency modulation. (Qualitative) 1 ML: Art 10.1, 10.2, 11.1, 11.3 to 11.5, 11.7. 2. MB: Art 24.1, 24.3, 24.4. 3. VKM: Art. 16.1 to 16.11.	

- 1. MB: Electronic Principles: A. P. Malvino and D.J. Bates (7th Ed.) (TMH).
- 2. VKM: Principles of Electronics: V. K. Mehta and Rohit Mehta. S. Chand Publications. (11th Ed.).
- 3. KVR: Functional Electronics: K .V. Ramanan (TMH).
- 4. ML: Digital Principles and Applications: Malvino and Leach (4th Ed) (TMH).
- 5. MH: Integrated Electronics: Millman&Halkias Mc Graw Hill International.

Additional References:

- 1. Electronic Devices and Circuits: S. Salivahanan, N. Suresh Kumarand A. Vallavaraj. (2nd Ed.) (Tata McGraw Hill)
- 2. Pulse, Digital & Switching Waveforms: Millman&Taub. (TMH)

Course Title: Nuclear Physics

Academic year 2021-22

Learning Outcomes:

After successful completion of this course, a student will be able to:

- 1. Distinguish Gamow theory of alpha decay and derive Geiger- Nuttal law.
- 2. Compare the performances of different accelerators.
- 3. Evaluate each term involved in Weizsacher 's semi empirical mass formula and derive the equation of it.
- 4. Distinguish of discovery of basic elementary particle.
- 5. Understand the basics of Meson theory of nuclear force.
- 6. Understand the different elementary particle and their conservation laws.
- 7. Demonstrate quantitative problem solving skills in all the topics covered

COURSE CODE	Unit	TITLE	Credits/ lectures
RUSPHY603		Nuclear Physics	2.5 credits
	I	Alpha & Beta Decay	15 lectures
591		Alpha Decay: Velocity, energy, and Absorption of alpha particles: Range, Ionization and stopping power, Nuclear energy levels. Range of alpha particles, alpha particle spectrum, Fine structure, long range alpha particles, Alpha decay paradox: Barrier penetration (Gamow's theory of alpha decay and Geiger-Nuttal law), Beta decay: Introduction, Velocity and energy of beta particles, Energy levels and decay schemes, Continuous beta ray spectrum-Difficulties encountered to understand it, Pauli's neutrino hypothesis, Detection of neutrino, Energetics of beta decay. K: 13.1,13.2,13.5; P: 4. II. 1, 4. II. 2, 4. II. 3, 1.II.3 K:14.1,14.7 P: 4.III.1,4.III.2, 4.III.3, 4.III.5; G: 5.5.	
	II	Gamma Decay & Nuclear Models	15 lectures
		Gamma decay: Introduction, Internal conversion, nuclear isomerism, Mossbauer effect Nuclear Models: Liquid drop model, Weizsacher's semi- empirical mass formula, Mass parabolas - Prediction of stability against beta decay for members of an isobaric family, Stability limits against spontaneous fission. Shell	

	model (Qualitative), Magic numbers in the nucleus P 4. IV. 1, 4. IV. 3, 4. IV. 4, 9.4. P: 5.1, 5.3, 5.4, 5.5. AB: 11.6-pages (460,461)	
Ш	Particle Accelerators & Energy Generation	15 lectures
	Particle Accelerators: Van de Graff Generator, Cyclotron, Synchrotron, Betatron and Idea of Large Hadron Collider Nuclear energy: Introduction, Asymmetric fission - Mass yield, Emission of delayed neutrons, Nuclear release in fission, Nature of fission fragments, Energy released in the fission of U235, Fission of lighter nuclei, Fission chain reaction, Neutron cycle in a thermal nuclear reactor (Four Factor Formula), Nuclear reactors, Natural fusion, Possibility of controlled fusion P: 1.I.4 (i), 1.I.4 (ii), 1.I.4 (iii), 1.I.4 (iv), AB 15.7 P: 6.1, 6.3 to 6.9, 9.6, 9.7	800
IV	Meson theory & Elementary particles	15 lectures
	Meson theory of Nuclear Force- A qualitative discussion Elementary particles: Introduction, Classification of elementary particles, Particle interactions, Conservation laws(linear & Lepton number), particles and antiparticles(Electrons and positrons, Protons and antiprotons, Neutrons and antineutrinos), Photons, Mesons, Quark model(Qualitative). 1. P:8.6 2. T: 18.1, 18.2,18.3, 18.4, 18.5 to 18.9 AB: 13.5	

- 1. AB: Concepts of Modern Physics: Arthur Beiser, Shobhit Mahajan, S Rai Choudhury (6th Ed.) (TMH).
- 2. P: Nuclear Physics: S.B. Patel (Wiley Eastern Ltd.).
- 3. K: Nuclear Physics: Irving Kaplan (2nd Ed.) (Addison Wesley).
- 4. G: Nuclear Physics: S. N. Ghoshal (S. Chand & Co.)
- 5. T: Nuclear Physics: D. C. Tayal (Himalayan Publishing House) 5th Ed.

Additional References.

- 1. Modern Physics: Kenneth Krane (2nd Ed.) John Wiley & Sons.
- 2. Atomic & Nuclear Physics: N Subrahmanyam, Brij Lal. (Revised by JivanSeshan.) S. Chand.
- 3. Atomic & Nuclear Physics: A B Gupta & Dipak Ghosh Books & Allied (P) Ltd.
- 4. Introduction to Elementary Particles: David Griffiths, Second Revised Edition, Wiley-VCH

Course Title: Special Theory of Relativity Academic year 2021-22

Learning Outcomes:

After successful completion of this course, a student will be able to:

- 1. Understand the transformation equation
- 2. Verify the laws of physics
- 3. Study the concepts of Michelson- Morley experiment, Doppler s effect
- 4. Comparison of general and special theory of relativity
- 5. Understand the relativistic Mechanics
- 6. Understand the relativistic electromagnetism
- 7. Solving conceptual numerical by using above concepts

_			
COURSE	Unit	TITLE	Credits/ lectures
RUSPHY604		Special Theory of Relativity	2.5 credits
690		Experimental background of special theory of relativity and relativistic kinematics: Galilean transformations, Newtonian relativity, Electromagnetism and Newtonian relativity. Attempts to locate absolute frame: Michelson-Morley experiment, Attempts to preserve the concept of a preferred ether frame: Lorentz Fitzgerald contraction and ether drag hypothesis, Attempt to modify electrodynamics, postulates of the special theory of relativity. Relativistic Kinematics: Simultaneity, Derivation of Lorentz transformation equations, Some consequences of the Lorentz transformation equations: length contraction, time dilation and meson experiment, The observer in relativity RR: 1.1 to 1.6, 1.8, 1.9, 2.1, to 2.5	15 lectures
	II	Relativistic Kinematics Relativistic Kinematics (continued): The relativistic addition of velocities and acceleration transformation	15 lectures

	equations, Aberration and Doppler Effect in relativity, The common sense of special relativity. The Geometric Representation of Space-Time: Space-Time Diagrams, Simultaneity, Length contraction and Time dilation, The time order and space separation of events, The twin paradox RR 2.6 to 2.8, Supplementary topics A1, A2, A3, B1, B2, B3)
	Relativistic Dynamics	15 lectures
Ш	Relativistic Dynamics: Mechanics and Relativity, The need to redefine momentum, Relativistic momentum, Alternative views of mass in relativity, The relativistic force law and the dynamics of a single particle, The equivalence of mass and energy, The transformation properties of momentum, energy and mass. RR 3.1 to 3.7	
	Relativity and Electromagnetism	15 lectures
IV	Relativity and Electromagnetism: Introduction, The interdependence of Electric and Magnetic fields, The Transformation for E and B, The field of a uniformly moving point charge, Force and fields near a current-carrying wire, Force between moving charges, The invariance of Maxwell's equations. The principle of equivalence and general relativity, Gravitational red shift. RR 4.1 to 4.7 Supplementary topic C1, C2, C3, C4	

- 1. RR: Introduction to Special Relativity: Robert Resnick (Wiley Student Edition)
- 2. Special theory of Relativity: A. P. French

Semester VI-----Practicals

RUSPHYP06 – Physics Laboratory Course

The T. Y. B. Sc. Syllabus integrates the regular practical work with a series of demonstration and skill experiments. During the teaching and examination of Physics laboratory work, simple modifications of experimental parameters may be attempted. Attention should be given to basic skills of experimentation which include:

- i. Understanding relevant concepts.
- ii. Planning of the experiments
- iii. Layout and adjustments of the equipment
- iv. Recording of observations and plotting of graphs
- v. Calculation of results and estimation of possible errors in the observation of results.

Regular Physics Experiments: A minimum of 8 experiments from each of the practical course are to be performed and reported in the journal.

Demo Experiments: The demonstration experiments are to be performed by the teacher in the laboratory and students should be encouraged to participate and take observation wherever possible. Demonstration experiments are designed to bring about interest and excitement in Physics. Students are required to enter details of these 'demo' experiments in their journal. The certified journal must contain a minimum of **16 regular experiments** (**8 from each practical course**), with minimum **8 demonstration experiments** in semester VI. A separate index and certificate in journal is must for each semester course. There will be two turns of three hours each for the examination of practical courses

Demonstration	1.	Amplitude Modulation	
Experiments:	2.	Frequency Modulation	
	3.	lodine absorption spectra	
	4.	Equation Solver	
	5.	Michelson's interferometer	
	6.	Open CRO, power Supply, Signal Generator: Discuss	
		Block Diagram	
	7.	Firing of TRIAC using DIAC	
	8.	Use of PC / µP to control real world parameters	
	9.	Standing waves in liquid using Ultrasonic waves	
	10.	Zeeman Effect	
	11.	Millikan's oil drop experiment	
	12.	Seven segment display	
	13.	Data sheets reading for Diodes, transistor, Opamp, and	
		Optoelectronic devices	
	14.	Circuit Designing – single stage amplifier, Transistor	
0.0,		Multivibrator etc. and designing on Breadboard.	
Group A	1.	Quincke's method for surface tension of Mercury	
(RUSPHYP601)	2.	Lloyd's mirror	
(10011111001)	3.	Double refraction	
	4.	FET characteristics	
	5.	UJT as relaxation oscillator	
	6.	SCR characteristics	
	7.	Photodiode characteristics	
	8.	Applications of MOSFET	

	9.	SCR-Half Wave rectifier	
	1.	Capacitance by using parallel bridge	
	2.	Calibration of Si diode & copper constantan thermocouple	
	۷.	as temperature sensor	
	3.	Maxwell's, desauty's and Maxwell -Wein Bridge	
	4.	555 timer as Monostable Multivibrator	
Group B	5.	555 timer as Astable Multivibrator	
(RUSPHYP602)	6.	Transistor series regulator – fold-back	
	7.	555 timer as ramp generator	
	8.	LM317 as current regulator	
	0	OPAMP as Monostable /Astable multivibrator using	
	9.	breadboard	
			•

MODALITY OF ASSESSMENT-SEM VI

Theory Examination Pattern:-

A) Internal Assessment - 40% = 40 marks.

Theory Paper- Paper code	Test Marks	Assignment	Marks distribution	Total Marks per paper
Math. Methods of Physics, Thermal & Statistical Physics RUSPHY501	20	15 questions on units1,2,3	Assessment- 15 mark Viva on it05 mark Total= 20 mark	40
Solid State Physics RUSPHY502	20	15 questions on units1,2,3	Assessment- 15 mark Viva on it05 mark Total= 20 mark	40
Atomic & Molecular Physics RUSPHY503	20	15 questions on units1,2,3	Assessment- 15 mark Viva on it05 mark Total= 20 mark	40
Electrodynamics RUSPHY504	20	15 questions on units1,2,3	Assessment- 15 mark Viva on it05 mark Total= 20 mark	40

B) Internal test pattern (half an hour test)

Questions	options	Marks
Q.1	20 objective questions , all compulsory, each question with 4 options; (half mark each)	10
Q.2	Attempt any two numerical out of four.(3 marks each)	06
Q.3	Attempt any one numerical out of two.(4 marks each)	04
	Total marks	20

C) External examination - 60 %

Semester-end Theory Assessment - 60 marks

- vi. Duration These examinations shall be of 2 hours duration.
- vii. Paper Pattern:
 - III. There shall be **5** questions each of **12** marks. On each unit there will be one question & last question will be based on all the 4 units.
 - IV. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions on
Q.1)A)	Any 1 out of 2	6	Unit I
Q.1)B)	Any 1 out of 2	6	1
Q.2)A)	Any 1 out of 2	6	Unit II
Q.2)B)	Any 1 out of 2	6	
Q.3)A)	Any 1 out of 2	6	Unit III
Q.3)B)	Any 1 out of 2	6	
Q.4)A)	Any 1 out of 2	6	Unit IV
Q.4)B)	Any 1 out of 2	6	
Q.5)A)	Any 1 out of 2	3	Unit I
Q.5)B)	Any 1 out of 2	3	Unit II
Q.5C)	Any 1 out of 2	3	Unit III
Q.5)D)	Any 1 out of 2	3	Unit IV

Practical Examination Pattern:

(A)Internal Examination:

Sr.	Activity	Practical-	Practical-
No.		Group-A	Group-B
		(Marks)	(Marks)
1.	Seminar on experiment from each group:	8	8
	Content- 2 mark		90
	Presentation-2 mark		30
	Q(Teacher)2 mark		
	Q(Student) -2 mark		
2.	Continuous Assessment (2 mark per experiment/ 8 regular	24	24
	and 4 demo experiment))		
3.	Main Journal (1 mark per regular experiment)	8	8
	Total (1+2+3)	40	40
	Requirement for the certification		
	8 demo experiments and 16 regular experiments		

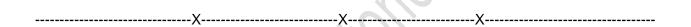
(B) External (Semester end practical examination):

Particulars	Practical I (Marks)	Practical II (Marks)
Laboratory work	50	50
Viva	10	10
Total	60	60

PRACTICAL BOOK/JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/
Coordinator / In-charge of the department; failing which the student will not be allowed to appear for the practical examination.


Overall Examination and Marks Distribution Pattern

Semester---- VI

Course	RUSPHY601			RUSPHY602		RUSPHY603			RUSPHY604			Total	
	(Marks)		s)	(Marks)		(Marks)		(Marks)		(Marks			
	Int.	Ext.	Total	I	Е	Т	I	Е	Т	I	Е	Т	
Theory	40	60	100	40	60	100	40	60	100	40	60	100	400

Course		RUSPHYP	601		Total	
	(Marks)				(Marks)	
	Int.	Ext.	Total	Int.	Ext. Total	
Practicals	40	60	100	40	60 100	200

(GRAND TOTAL MARKS: 600)

