Resolution Number: AC/II(23-24).2.RUS8 # S. P. Mandali's # Ramnarain Ruia Autonomous College Affiliated to Mumbai University Syllabus for Program: B.A. in Mathematics Program Code: B.Sc. (As per the guidelines of National Education Policy 2020-Academic year 2024-25) (Choice based Credit System) Resolution Number: AC/II(23-24).2.RUA12 # S. P. Mandali's # Ramnarain Ruia Autonomous College Affiliated to Mumbai University Syllabus for Program: F.Y.B.A Program Code: B.A. (As per the guidelines of National Education Policy 2020-Academic year 2024-25) (Choice based Credit System) #### Graduate Attributes | GA | GA Description-A student completing Bachelor's/Master's Degree in Mathematics program will be able to: | |--|--| | | Recall and explain acquired scientific knowledge in a comprehensive manner an | | GA1 | apply the skills acquired in their chosen discipline. Interpret scientific ideas and | | GA GA1 GA2 GA3 GA4 GA5 GA6 GA7 GA8 | relate its interconnectedness to various fields in science. | | | Evaluate scientific ideas critically, analyze problems, explore options for practic | | GA2 | demonstrations, illustrate work plans and execute them, organize data and dra | | | inferences. | | | Explore and evaluate digital information and use it for knowledge upgradation. | | GA3 | Apply relevant information so gathered for analysis and communication using a | | | propriate digital tools. | |
GA4 | Ask relevant questions, understand scientific relevance, hypothesize a scientific | | GA4 | problem, construct and execute a project plan and analyse results. | | | Take complex challenges, work responsibly and independently, as well as in coh | | GA5 | sion with a team for completion of a task. Communicate effectively, convincing | | | and in an articulate manner. | | CAC | Apply scientific information with sensitivity to values of different cultural group | | GA ₀ | Disseminate scientific knowledge effectively for upliftment of the society. | | | Follow ethical practices at work place and be unbiased and critical in interpreta | | GA7 | tion of scientific data. Understand the environmental issues and explore sustain | | | able solutions for it. | | | Keep abreast with current scientific developments in the specific discipline and | | GA8 | adapt to technological advancements for better application of scientific knowled | | | as a lifelong learner | # **Program Outcomes** | РО | Description-A student completing Bachelor's Degree in Science/Art program in the subject of Mathematics will be able to: | |------|--| | | Demonstrate fundamental systematic knowledge of mathematics and its application | | DO1 | tions in engineering, science technology and mathematical sciences. It should a | | PO1 | enhance the subject specific knowledge and help in creating jobs in various see | | | tors. | | PO2 | Demonstrate educational skills in areas of analysis, algebra, differential equation | | 1 02 | Graph Theory and combinatorics etc. | | | Apply knowledge, understanding and skills to identify the difficult unsolved | | PO3 | problems in mathematics and to collect the required information in possible | | 1 00 | range of sources and try to analyse and evaluate these problems using appropr | | | ate methodologies. | | | Fulfil one's learning requirements in mathematics, drawing from a range of con- | | PO4 | temporary research works and their applications in diverse areas of mathemati | | | sciences. | | PO5 | Apply one's disciplinary knowledge and skills in mathematics in newer domain | | | and uncharted areas. | | PO6 | Identify challenging problems in mathematics and obtain well-defined solutions | | PO7 | Exhibit subject-specific transferable knowledge in mathematics relevant to job | | | trends and employment opportunities. | | P. | Air | | | | | | 3 | #### Credit Structure for FYBA/BSc/BVoc/BACM | Semes
ter | Subjec | DS
E | Subjec
t 2 | GE/
OE
course | Vocationa
l and Skill
Enhance
ment
Course
(VSC) &
SEC | Ability Enhancemen t Course/ VEC/IKS | OJT/FP/CE
PCC, RP | Total
Cred
its | |--------------|------------------|---------|------------------|---------------------|---|--|----------------------|----------------------| | 1 | 4
(3T+1
P) | | 4
(3T+1
P) | 4
(3T+1
P) | VSC-
2(1T+1P
) Sub 1+
SEC -2
(1T+1P) | AEC-2
(CSK) +
VEC- 2
(Understan
ding India)
+ IKS-2 | | 22 | | 2 | 4
(3T+1
P) | .~ | 4
(3T+1
P) | (3T+1
P) | VSC-
2(1T+1P
) Sub 2+
SEC -2
(1T+1P) | AEC-2
(CSK)+
VEC-2
(Env Sc) | CC-2 | 22 | | Total | 8 | | 8 | 8 | 8 | 10 | 2 | 44 | Exit option: award of UG certificate in Major with 44 credits and an additional 4 credit Core NSQF course/ Internship or Continue with Major and Minor ## Credit Structure for SYBA/BSc/BVoc/BACM | Semest
er | Subject
(Major | r) | Subjec
t 2
(Mino
r) | GE/
OE
cours
e | Vocational
and Skill
Enhanceme
nt Course
(VSC) &
SEC | Ability
Enhancement
Course/
VEC/IKS | OJT/FP/CEPC
C, RP | Total
Credi
ts | |--------------|----------------------------------|---------|------------------------------|-------------------------|---|--|----------------------|----------------------| | | DSC | DS
E | | | | | | | | 3 | Major 8
4*2/
(3T+1P)
*2 | | Minor
4
(3T+1
P) | 2 | VSC-2-
Major | AEC-2 MIL
(Marathi/Hin
di) | FP -2, CC-2 | 22 | | 4 | Major 8
4*2/
(3T+1P)
*2 | | Minor
4
(3T+1
P) | 2 | SEC-2 | AEC-2 MIL
(Marathi/
Hindi) | CEP-2, CC-2 | 22 | | Total | 16 | | 8 | 4 | 4 | 4 | 8 | 44 | No change for TYBA/BSC (Retain the old format) #### **Credit structure for MA/MSC** | Semester | Mandatory | Elective | R
M | OJT/F
P | RP/
Internship | Credit | 0 | |------------------|-----------|----------|--------|------------|-------------------|--------|---| | 1 | 14 | 4 | 4 | 0 | 0 | 22 | | | 2 | 14 | 4 | 0 | 4 FP | | 22 | | | 3 | 12 | 4 | 0 | 0 | 6 RP | 22 | | | 4 | 8 | 4 |)6. (| 37 | 10 OJT | 22 | | | Total
CREDITS | 48 | 16 | 4 | 4 | 16 | 88 | | Raining California Comment of the Co # Course Code: RUAMAT.O101 Course Title: Calculus-I Type of Course: Discipline Specific Core Course Academic year 2023-24 | CO | CO Description | |-----|--| | CO1 | to explain the properties of real numbers. | | CO2 | to explain the notions of convergent sequences. | | CO3 | to outline the concepts of limits and continuity. | | CO4 | to apply the concepts of limits and continuity in the fields of economics, physics | | | and biological sciences. | | Course Code Uni | Course/Unit Title | Credits/Hours | |------------------|--|---------------| | Unit | Real number system R and order properties of R, Absolute value . and its properties.Bounded sets, statement of l.u.b. axiom, gl.b. axiom and its consequences, Supremum and infimum, Maximum and minimum, Archimedean property and its applications, density of rationals, Cantors nested interval theorem.AM-GM inequality, Cauchy-Schwarz inequality, intervals and neighbourhoods, Hausdorff property. | 1/15 | | RUAMAT.O101 Unit | Sequences Definition of a sequence and examples, Convergence of sequence, every convergent sequence is bounded, Limit of a convergent sequence and uniqueness of limit. Divergent sequences. Algebra of convergent sequences, sandwich theorem. Convergence of standard sequences like $\left(\frac{1}{1+na}\right) \forall a > 0, \ (b^n), \ b < 1, \ (c^{1/n}) \forall c > 0 \text{and} \left(n^{1/n}\right)$, monotone sequences, convergence of monotone bounded sequence theorem and consequences such as convergence of $\left(\left(1+\frac{1}{n}\right)^n\right)$. Definition of subsequence, subsequence of a convergent sequence is convergent and converges to the same limit. Every sequence in R has a monotonic subsequence. Bolzano-Weierstrass Theorem. Definition of a Cauchy sequence, every convergent sequence is a Cauchy sequence. | 1/15 | | Course Code | Unit | Course/Unit Title | Credits/Hours | |-------------|---------------
--|---------------| | Course Code | Unit Unit III | Course/Unit Title Limits & Continuity Brief review: Domain and range of a function, injective function, surjective function, bijective function, composite of two functions (when defined), Inverse of a bijective function. Graphs of some standard functions such as $ x $, e^x , $\log x$, $ax^2 + bx + c$, $\frac{1}{x}$, x^n $(n \ge 3)$, $\sin x$, $\cos x$, $\tan x$, $x \sin\left(\frac{1}{x}\right)$, $x^2 \sin\left(\frac{1}{x}\right)$ over suitable intervals of \mathbb{R} . $\varepsilon - \delta$ definition of limit of a real valued function of real variable. Evaluation of limit of simple functions using the definition, uniqueness limit if it exists, algebra of limits, limit of composite function, sandwich theorem, left-hand limit $\lim_{x\to a^+} f(x)$, right-hand limit $\lim_{x\to a^+} f(x)$, non existence of limits, $\lim_{x\to -\infty} f(x)$, $\lim_{x\to a^+} f(x)$ and $\lim_{x\to a} f(x) = \pm \infty$. Continuous functions: Continuity of a real valued | Credits/Hours | | | | function on a set in terms of limits, examples, Continuity of a real valued function at end points of domain, Sequential continuity, Algebra of continuous functions, Discontinuous functions, examples of removable and essential discontinuity. | | | | Practicals Based on Course : Calculus-1 | |------------|--| | Sr. No. | Practicals | | 1 | Application based examples of Archimedean property, intervals, neighbourhoo | | 2 | Consequences of l.u.b. axiom, infimum and supremum of sets. | | 3 | Calculating limits of sequences. | | 4 | Cauchy sequences, monotone sequences. | | 5 | Limit of a function and Sandwich theorem. | | 6 | Continuous and discontinuous functions. | | | | | Q 3 | ALLIA COLLAR COL | #### Reference Books: - (1) R. R. Goldberg, Methods of Real Analysis, Oxford and IBH, 1964. - (2) K.G. BINMORE, Mathematical Analysis, Cambridge University Press, 1982. - (3) R.G. Bartle, D.R. Sherbert, Introduction to Real Analysis, John Wiley & Sons, 1994. - (4) T. M. Apostol, Calculus Volume I, Wiley & Sons (Asia) Pvt. Ltd, 1991. - (5) R. Courant, F. John, A Introduction to Calculus and Analysis, Volume I, Springer - (6) A. Kumar, S. Kumaresan, A Basic Course in Real Analysis, CRC Press, 2014. - (7) J. Stewart, Calculus, Third Edition, Brooks/Cole Publishing Company, 1994. - and culus and Anthonio Properties Registration of the (8) S. R. GHORPADE, B. V. LIMAYE, A Course in Calculus and Real Analysis, Springer 9 # Modality of Assessment: Discipline Specific Core Course (4 Credit Course for ${\rm BA}$) #### (A) Internal Assessment - 30 Marks | Sr. No. | Evaluation Type | Marks | 7 | |---------|-----------------------------------|-------|---| | 1 | Test | 20 | | | 2 | Assignment/Viva/Test/Presentation | 10) | 2 | | | Total: 30 Marks | | | #### (B) External Examination- 45 Marks - 1. Duration: These examinations shall be of **two hours duration**. - 2. Theory Question Pattern | Question | Marks | Questions Based on | |------------|-------|--------------------| | Question 1 | 15 | Unit-L | | Question 2 | 15 | Umt-II | | Question 3 | 15 | Vnit-III | # Practical Examination - 50 Marks | Sr. No. | Evaluation Type | Marks | |---------|-----------------------------------|-------| | A | Assignment/Viva/Test/Presentation | 20 | | В | Practical Examination | 30 | | | Total: 50 Marks | | #### Course Code: RUAVSCMAT.O101 Course Title: Calculus with SageMath-I Type of Course: Vocational and Skill Enhancement #### Course Academic year 2024-25 | CO | CO Description | |-----|---| | CO1 | To define and manipulate functions and symbols in Sagemath | | CO2 | Use of Sagemath as a calculator | | CO3 | Use of graphics in Sagemath | | | Authorio Authorio Anni Anthorio Anni Anni Anni Anni Anni Anni An | # Detailed Syllabus Calculus with SageMath-I | Unit | Course/Unit Title | Credits/Hours | |--------|--|--| | | 1. Sage installation and use in various platforms. | | | | 2. Data types in SageMath. | | | Unit I | 3. Use of SageMath as an advanced calculator. | 1/15 | | | 4. Defining variables and functions in SageMath. | | | | 5. Finding roots of functions and polynomials in SageMath. | O _y | | | | 1. Sage installation and use in various platforms. 2. Data types in SageMath. 3. Use of SageMath as an advanced calculator. 4. Defining variables and functions in SageMath. | # Practicals Based on Calculus with SageMath-I | | Course Code: RUAVSCMATP.0101 | | | |---------|--|--|--| | Sr. No. | Practicals | | | | 1 | Defining functions and symbols in Sagemath. | | | | 2 | Plotting graphs using Sagemath. | | | | 3 | Manipulations with polynomials using Sagemath. | | | | 4 | Basic numerical methods using SageMath. | | | #### References: 1. George A. Anastassiou, Razyan A. Mezei (auth.)-Numerical Analysis Using Sage-Springer International Publishing (2015) # Modality of Assessment: Vocational and Skill Enhancement Course (2 Credit Theory Course for BSc) #### (A) Internal Assessment - 10 Marks • Theory examination for 10 marks will be conducted by the department. #### (B) External Examination- 15 Marks • Theory examination for 15 marks will be conducted by the department. #### (C) Practical Examination - 50 Marks | Sr. No. | Evaluation Type | Marks | |---------
--|-------| | 1 | Assignment/Viva/Test/Presentation | 20 | | 2 | Practical Examination | 30 | | | Total: 50 Marks | ' | | | All Distriction All Control Al | | - (2) #### Course Code: RUAMAT.E111 Course Title: Calculus-II # Type of Course: Discipline Specific Core Course Academic year 2023-24 | | \mathcal{L} | |-----|--| | СО | CO Description | | CO1 | to analyze the properties of continuous functions. | | CO2 | to identify differentiable functions. | | CO3 | to analyze properties of differentiable functions. | | CO4 | to test the convergence of series. | | | Anna Ruia Ruia Anna Ruia Ruia Ruia Ruia Ruia Ruia Ruia Rui | | | | | | 14 | | Course Code | Unit | Course/Unit Title | Credits/Hours | |-------------|---------|--|---------------| | | | Continuity of a function on the interval Review of the definition of continuity (at a point and on the domain). Uniform continuity, sequential continuity, examples. | | | | | Properties of continuous functions such as the following: | | | | | 1. Intermediate value property | | | | Unit I | A continuous function on a closed and bounded interval is bounded and at-
tains its bounds. | 1/15 | | | | 3. If a continuous function on an interval is injective then it is strictly monotonic and inverse function is continuous and strictly monotonic. | 1/6 | | | | 4. A continuous function on a closed and bounded interval is uniformly continuous. | O | | RUAMAT.E111 | Unit II | Differentiability & its Applications: Differentiation of a real valued function of one variable: Definition of differentiation at a point of an open interval, examples of differentiable and non differentiable functions, differentiable functions are continuous but not conversely, algebra of differentiable functions. Chain rule, Higher order derivatives, Leibnitz rule, Derivative of Inverse functions, Implicit differentiation (only examples). Rolle's Theorem, Lagrange's and Cauchy's mean value theorems, applications and examples Taylor's theorem with Lagrange's form of remainder (without proof), Taylor polynomial and applications Monotone increasing and decreasing function, examples Definition of local maximum and local minimum, necessary condition, stationary points, second derivative test, examples, concave, convex functions, points of inflection. Applications to curve sketching. L'Hospital's rule without proof, examples of indeterminate forms. | 1/15 | | Course Code | Unit | Course/Unit Title | Credits/Hours | |-------------|----------|---|---------------| | | Unit III | Series $\sum_{n=1}^{\infty} a_n$ of real numbers, simple examples of series, Sequence of partial sums of a series, convergence of a series, convergent series, divergent series, Necessary condition: $\sum_{n=1}^{\infty} a_n$ converges $\Rightarrow a_n \to 0$, but converse is not true, algebra of convergent series, Cauchy criterion, divergence of harmonic series, convergence of $\sum_{n=1}^{\infty} \frac{1}{n^p}$ $(p > 1)$, Comparison test, limit comparison test, alternating series, Leibnitz's theorem (alternating series test) and convergence of $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$, absolute convergence, conditional convergence, absolute convergence implies convergence but not conversely, Ratio test (without proof), Root test (without proof), and examples. | 1/15 | | | Practicals Based on Subject-1 Calculus-II | | | |---------|--|--|--| | Sr. No. | Practicals | | | | 1 | Calculating limit of series, Convergence tests. | | | | 2 | Properties of continuous functions. | | | | 3 | Differentiability, Higher order derivatives, Leibnitz theorem. | | | | 4 | Mean value theorems and its applications. | | | | 5 | Extreme values, increasing and decreasing functions. | | | | 6 | Applications of Taylor's theorem and Taylor's polynomials. | | | | Ç3 | | | | #### Reference Books: - (1) R. R. Goldberg, Methods of Real Analysis, Oxford and IBH, 1964. - (2) J. Stewart, Calculus, Third Edition, Brooks/cole Publishing Company, 1994 - (3) T. M. Apostol, Calculus Vol I, Wiley & Sons (Asia). - (4) R. Courant, F. John, A Introduction to Calculus and Analysis, Volume I, Springer. - (5) A. Kumar, S. Kumaresan, A Basic Course in Real Analysis, CRC Press, 2014 - (6) S. R. GHORPADE, B. V. LIMAYE, A Course in Calculus and Real Analysis, Springer International Ltd, 2006. - Raina din Ruitononia. (7) K.G. BINMORE, Mathematical Analysis, Cambridge University Press, 1982 # Modality of Assessment: Discipline Specific Core Course (4 Credit Course for BA) #### (A) Internal Assessment - 30 Marks | Sr. No. | Evaluation Type | Marks | |---------|-----------------------------------|-------| | 1 | Test | 20 | | 2 | Assignment/Viva/Test/Presentation | 10 | | | Total: 30 Marks | 7 | #### (B) External Examination- 45 Marks - 1. Duration: These examinations shall be of **two hours duration**. - 2. Theory Question Pattern | Question | Marks | Questions Based on | |------------|-------|--------------------| | Question 1 | 15 | Unit-I | | Question 2 | 15 | Unit-M | | Question 3 | 15 | Unit III | # Practical Examination - 50 Marks | Sr. No. | Evaluation Type | Marks | | |-----------------|-----------------------------------|-------|--| | A | Assignment/Viva/Test/Presentation | 20 | | | В | Practical Examination | 30 | | | Total: 50 Marks | | | | # Course Code: RUASECMAT.E111 Course Title: Calculus with SageMath-II Type of Course: Skill Enhancement Course Academic year 2024-25 | | - C | |-----|---| | CO | CO Description | | CO1 | Students will be able to write programs to find limits, derivatives and integration | | | of a function in SageMath | | CO2 | Students will be able to implement Riemann integration in SageMath. | | CO3 | Students will be able to implement washer method and shell method in SageMath | Randinarain Ralia Ralia Randinarain Randin # Detailed Syllabus Calculus with SageMath-II | Course Code | Unit | Course/Unit Title | Credits/Hours | |----------------|--------
--|---------------| | RUASECMAT.E111 | Unit I | Defining functions using SageMath, plotting graphs of functions of one variable. Evaluating limits and discussing continuity of real valued functions of one-variable Riemann integration for real valued functions of one variable and its implementation in SageMath. Drawing surfaces of revolution using SageMath. Writing programs for washer method and shell method in Sagemath. | | # Practicals based on Calculus with SageMath-II | | Course Code: | |---------|--| | Sr. No. | Practicals | | 1 | Defining functions and symbols in Sagemath, evaluating Limits, Plotting graphs of functions on $\mathbb R$ using SageMath. | | 2 | Implementing derivatives and their applications in SageMath. | | 3 | Riemann integration using SageMath. | | 3 | Plotting surfaces of revolution in SageMath. | #### References: 1. George A. Anastassiou, Razvan A. Mezei (auth.)-Numerical Analysis Using Sage-Springer International Publishing (2015) ## Modality of Assessment: Skill Enhancement Course (2 Credit SEC Course for BA) #### (A) Internal Assessment - 10 Marks • Theory examination for 10 marks will be conducted by the department. #### (B) External Examination- 15 Marks • Theory examination for 15 marks will be conducted by the department. #### (C) Practical Examination - 50 Marks | Sr. No. | Evaluation Type | Marks | |---------|--|-------| | 1 | Assignment/Viva/Test/Presentation | 20 | | 2 | Practical Examination | 30 | | | Total: 50 Marks | | | | All Rill Philip All On Philip All Control of the Al | | | | | | Resolution Number: AC/II(23-24).2.RUA12 # S. P. Mandali's # Ramnarain Ruia Autonomous College Affiliated to Mumbai University Syllabus for Program: S.Y.B.A. Program Code: B.A. (As per the guidelines of National Education Policy 2020-Academic year 2024-25) (Choice based Credit System) #### Graduate Attributes | GA | Graduate Attributes Description-A student completing Bache- | |--------------|---| | | lor's/Master's Degree in Mathematics program will be able to: | | GA1 | Recall and explain acquired scientific knowledge in a comprehensive manner and apply the skills acquired in their chosen discipline. Interpret scientific ideas and | | | relate its interconnectedness to various fields in science. | | | Evaluate scientific ideas critically, analyze problems, explore options for practical | | GA2 | demonstrations, illustrate work plans and execute them, organize data and draw | | | inferences. | | | Explore and evaluate digital information and use it for knowledge upgradation. | | GA3 | Apply relevant information so gathered for analysis and communication using ap- | | | propriate digital tools. | | GA4 | Ask relevant questions, understand scientific relevance, hypothesize a scientific prob- | | | lem, construct and execute a project plan and analyse results. | | | Take complex challenges, work responsibly and independently, as well as in cohesion | | GA5 | with a team for completion of a task. Communicate effectively, convincingly and in | | | an articulate manner. | | GA6 | Apply scientific information with sensitivity to values of different cultural groups. | | | Disseminate scientific knowledge effectively for upliftment of the society. | | ~ | Follow ethical practices at work place and be unbiased and critical in interpretation | | GA7 | of scientific data. Understand the environmental issues and explore sustainable | | | solutions for it. | | Q 4 0 | Keep abreast with current scientific developments in the specific discipline and adapt | | GA8 | to technological advancements for better application of scientific knowledge as a | | | lifelong learner | lifelong learner | | 7 | | ## **Program Outcomes** | | Description-A student completing Bachelor's Degree in Science/Arts program in the subject of Mathematics will be able to: | |------|---| | | Demonstrate fundamental systematic knowledge of mathematics and its application | | PO1 | in engineering, science technology and mathematical sciences. It should also enhan | | | the subject specific knowledge and help in creating jobs in various sectors. | | DOO | Demonstrate educational skills in areas of analysis, algebra, differential equatio | | PO2 | Graph Theory and combinatorics etc. | | | Apply knowledge, understanding and skills to identify the difficult / unsolved pro- | | PO3 | lems in mathematics and to collect the required information in possible range | | 1 03 | sources and try to analyse and evaluate these problems using appropriate method | | | ologies. | | | Fulfil one's learning requirements in mathematics, drawing from a range of c | | PO4 | temporary research works and their applications in diverse areas of mathemati | | | sciences. | | PO5 | Apply one's disciplinary knowledge and skills in mathematics in newer domains a | | | uncharted areas. | | PO6 | Identify challenging problems in mathematics and obtain well-defined solutions. | | PO7 | Exhibit subject-specific transferable knowledge in mathematics relevant to job trenand employment opportunities. | | | | | 2 | Air | #### Credit Structure for FYBA/BSc/BVoc/BACM | Semes
ter | Subjec | DS
E | Subjec
t 2 | GE/
OE
course | Vocationa
l and Skill
Enhance
ment
Course
(VSC) &
SEC | Ability
Enhancemen
t Course/
VEC/IKS | OJT/FP/CE
PCC, RP | Total
Cred
its | |--------------|------------------|---------|------------------|---------------------|---|--|----------------------|----------------------| | 1 | 4
(3T+1
P) | | 4
(3T+1
P) | 4
(3T+1
P) | VSC-
2(1T+1P
) Sub 1+
SEC -2
(1T+1P) | AEC-2
(CSK) +
VEC- 2
(Understan
ding India)
+ IKS-2 | | 22 | | 2 | 4
(3T+1
P) | | 4
(3T+1
P) | (3T+1
P) | VSC-
2(1T+1P
) Sub 2+
SEC -2
(1T+1P) | AEC-2
(CSK)+
VEC-2
(Env Sc) | CC-2 | 22 | | Total | 8 | | 8 | 8 | 8 | 10 | 2 | 44 | Exit option: award of UG certificate in Major with 44 credits and an additional 4 credit Core NSQF course/ Internship or Continue with Major and Minor ## Credit Structure for SYBA/BSc/BVoc/BACM | Semest
er | Subject 1
(Major) | | Subjec
t 2
(Mino
r) | GE/
OE
cours
e | Vocational
and Skill
Enhanceme
nt Course
(VSC) &
SEC | Ability
Enhancement
Course/
VEC/IKS | OJT/FP/CEPC
C, RP | Total
Credi
ts | |--------------|----------------------------------|---------|------------------------------|-------------------------|---|--|----------------------|----------------------| | | DSC | DS
E | | | | | | | | 3 | Major 8
4*2/
(3T+1P)
*2 | | Minor
4
(3T+1
P) | 2 | VSC-2-
Major | AEC-2 MIL
(Marathi/Hin
di) | FP -2, CC-2 | 22 | | 4 | Major 8
4*2/
(3T+1P)
*2 | | Minor
4
(3T+1
P) | 2 | SEC-2 | AEC-2
MIL
(Marathi/
Hindi) | CEP-2, CC-2 | 22 | | Total | 16 | | 8 | 4 | 4 | 4 | 8 | 44 | | Exit opt | ion: award | | | | | its and an addition | onal 4 credit Core | e NSQF | No change for TYBA/BSC (Retain the old format) #### **Credit structure for MA/MSC** #### Semester-III Course Code: RUAMJMATO201 Course Title: Algebra-I Type of Course: Discipline Specific Core Course Academic year 2024-25 | CO | CO Description | |-----|---| | CO1 | to experiment with divisibility of integers. | | CO2 | to explain concept of functions and equivalence relations. | | CO3 | to explain concept of permutations and their algebraic properties. | | CO4 | to explain the properties of polynomials over $\mathbb R$ and $\mathbb C$ | | | Anna Ruita Ruita Anna Anna Anna Anna Anna Anna Anna An | # $\begin{array}{c} \textbf{Detailed Syllabus} \\ \textbf{Algebra-I} \end{array}$ | Course Code | Unit | Course/Unit Title | Credits/Hours | |--------------|---------|--|---------------| | | Unit I | Integers and divisibility Statements of well-ordering property of non-negative integers, Principle of finite induction (first and second) as a consequence of well-ordering property, Binomial theorem for non-negative exponents, Pascal's Triangle. Divisibility in integers, division algorithm, greatest common divisor (g.c.d.) and least common multiple (l.c.m.) of two integers, basic properties of g.c.d. such as existence and uniqueness of g.c.d. of integers a and b , and that the g.c.d. can be expressed as $ma + nb$ for some $m, n \in \mathbb{Z}$, Euclidean algorithm, Primes, Euclid's lemma, Fundamental theorem of arithmetic, The set of primes is infinite. Congruence relation: definition and elementary properties. Euler's ϕ function, Statements of Euler's theorem, Fermat's little theorem and Wilson's theorem, Applications. | 1/15 | | RUAMJMATO201 | Unit II | Functions and Equivalence relations Definition of a function. Image and inverse image of a set for a function and their properties. Permutation on a finite set as a function. Cycles and transpositions. Even and odd permutations. Composition of permutations as a binary operation. Inverse of a permutation. Total number of even and odd permutations on n symbols. Equivalence relation, Equivalence classes, properties such as two equivalences classes are either identical or disjoint, Definition of a partition of a set, every partition gives an equivalence relation and conversely. Congruence modulo n is an equivalence relation on \mathbb{Z} ; Residue classes and partition of \mathbb{Z} ; Addition modulo n ; Multiplication modulo n ; examples. | 1/15 | | Course Code | Unit | Course/Unit Title | Credits/Hours | |-------------|----------|--|---------------| | Course Code | Unit III | Polynomials Definition of a polynomial, polynomials over the field F where $F = \mathbb{Q}, \mathbb{R}$ or \mathbb{C} , Algebra of polynomials, degree of polynomial, basic properties. Division algorithm in $F[X]$, and g.c.d. of two polynomials and its basic properties, Euclidean algorithm, applications, Roots of a polynomial, relation between roots and coefficients, multiplicity of a root, Remainder theorem, Factor theorem. Complex roots of a polynomial in $\mathbb{R}[X]$ occur in conjugate pairs, Statement of Fundamental Theorem of Algebra, A polynomial of degree $\mathbb{R}[X]$ has exactly $\mathbb{R}[X]$ can be expressed as a product of linear and quadratic factors in $\mathbb{R}[X]$, necessary condition for a rational number p/q to be a root of a polynomial with integer coefficients, simple | Credits/Hours | | | | consequences such as \sqrt{p} is an irrational number where p is a prime number, n^{th} roots of unity, sum of all the n^{th} roots of unity. | | | | Practicals based on Algebra-I(Course code: RUAMJMATPO201) | | | | | |---------|---|--|--|--|--| | Sr. No. | Practicals | | | | | | 1 | Division Algorithm and Euclidean algorithm in Z, primes and the Fundamental | | | | | | 1 | Theorem of Arithmetic. | | | | | | 2 | Functions (direct image and inverse image), Injective, surjective, bijective functions, | | | | | | | finding inverses of bijective functions. | | | | | | 3 | Permutations | | | | | | 4 | Congruences and Eulers function, Fermat's little theorem, Euler's theorem and Wil- | | | | | | 4 | son's theorem. | | | | | | 5 | Equivalence relation. | | | | | | 6 | Factor Theorem, relation between roots and coefficients of polynomials, factorization | | | | | | | and reciprocal polynomials. | | | | | #### Reference Books: - (1) D. M. Burton, Elementary Number Theory, Seventh Edition, McGraw Hill Education (India) Private Ltd. - (2) N. L. Biggs, Discrete Mathematics, Revised Edition, Clarendon Press, Oxford 1989. - (3) I. NIVEN AND S. ZUCKERMAN, Introduction to the theory of numbers, Third Edition, Wiley Eastern, New Delhi, 1972. - (4) G. Birkhoff and S. Maclane, A Survey of Modern Algebra, Third Edition, MacMillan, New York, 1965. - (5) N. S. GOPALKRISHNAN, University Algebra, New Age International Ltd, Reprint 2013. - (6) I. N. Herstein, Topics in Algebra, John Wiley, 2006. - (7) P. B. Bhattacharya S. K. Jain and S. R. Nagpaul, Basic Abstract Algebra, New Age International, 1994. - (8) K. Rosen, Discrete Mathematics and its applications, Mc-Graw Hill International Edition, Mathematics Series. - (9) L CHILDS, Concrete Introduction to Higher Algebra, Springer, 1995. #### Course Code: RUAMJMATO202 Course Title: Linear Algebra-I Type of Course: Discipline Specific Core Course Academic year 2024-25 | СО | CO Description | |-----------------|--| | CO1 | to experiment with the system of linear equations and matrices. | | CO2 | to identify vector spaces. | | CO ₃ | to explain properties of vector spaces and subspaces. | | S | All Indian All Control of the Al | | | | | | 11 | # Detailed Syllabus Linear Algebra-I | Course Code | Unit | Course/Unit Title | Credits/Hours | |--------------|---------
--|---------------| | | Unit I | System of Linear Equations and Matrices Parametric equation of lines and planes, system of homogeneous and non-homogeneous linear equations, solution of a system of m homogeneous linear equations in n unknowns by elimination and their geometrical interpretation for $(m,n)=(1,2),(1,3),(2,2),(2,3),(3,3);$ Matrices with real entries; addition, scalar multiplication and multiplication of matrices; transpose of a matrix, types of matrices: zero matrix, identity matrix, scalar matrices, diagonal matrices, upper triangular matrices, lower triangular matrices, symmetric matrices, skew-symmetric matrices, Invertible matrices; identities such as $(AB)^t = B^tA^t$; $(AB)^{-1} = B^{-1}A^{-1}$. System of linear equations in matrix form, elementary row operations, row echelon matrix, Gaussian elimination method, to deduce that the system of m homogeneous linear equations in n unknowns has a non-trivial solution if $m < n$. | 1)15 | | RUAMJMATO202 | Unit II | Vector Spaces Definition of a real vector space, examples such as \mathbb{R}^n , $\mathbb{R}[X]$, $M_{m \times n}(\mathbb{R})$, space of all real valued functions on a nonempty set. Subspace: definition, examples, lines, planes passing through origin as subspaces of \mathbb{R}^2 , \mathbb{R}^3 respectively, upper triangular matrices, diagonal matrices, symmetric matrices, skew-symmetric matrices as subspaces of $M_n(\mathbb{R})$; $P_n(X) = \{a_0 + a_1X + \cdots + a_nX^n a_i \in \mathbb{R} \ \forall i, \ 0 \le i \le n\}$ as a subspace of $\mathbb{R}[X]$, the space of all solutions of the system of m homogeneous linear equations in n unknowns as a subspace of \mathbb{R}^n . Properties of a subspace such as necessary and sufficient condition for a nonempty subset to be a subspace of a vector space, arbitrary intersection of subspaces of a vector space is a subspace if and only if one is a subset of the other. Linear combination of vectors in a vector space; the linear span $L(S)$ of a nonempty subset S of a vector space, S is a generating set for $L(S)$; $L(S)$ is a vector subspace of V ; linearly independent/linearly dependent subsets of a vector space, examples | 1/15 | | Course Code | Unit | Course/Unit Title | Credits/Hours | |-------------|----------|---|---------------| | Course Code | Unit III | Bases and Linear Transformations Basis of a finite dimensional vector space, dimension of a vector space, maximal linearly independent subset of a vector space is a basis of a vector space, minimal generating set of a vector space is a basis of a vector space, any two bases of a vector space have the same number of elements, any set of n linearly independent vectors in an n dimensional vector space is a basis, any collection of $n+1$ linearly independent vectors in an n dimensional vector space is linearly dependent, if W_1, W_2 are two subspaces of a vector space V then $W_1 + W_2$ is a subspace of the vector space V of dimension $\dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$, extending any basis of a subspace W of a vector space V to a basis of the vector space V . Linear transformations; kernel $\ker(T)$ of a linear transformation T , matrix associated with a linear transformation T , properties such as: for a linear transformation T , $\ker(T)$ is a subspace of the domain space of T and the image $\operatorname{Image}(T)$ is a subspace of the co-domain space of T . If V, W are real vector spaces with $\{v_1, v_2, \ldots, v_n\}$ a basis of V and $\{w_1, w_2, \ldots, w_n\}$ any vectors in W then there exists a unique linear | Credits/Hours | | | | transformation $T: V \to W$ such that $T(v_j) = w_j \forall j, 1 \leq j \leq n$, Rank Nullity theorem (statement only) and examples. | | | Prac | Practicals Based on Linear Algebra-I (Course Code: RUAMJMATPO202) | | | | | |---------|---|--|--|--|--| | Sr. No. | Practicals | | | | | | 1 | Solving homogeneous system of m equations in n unknowns by elimination for | | | | | | | (m, n) = (1, 2), (1, 3), (2, 2), (2, 3), (3, 3); row echelon form. | | | | | | 2 | Solving system $Ax = b$ by Gauss elimination, Solutions of system of linear Equations. | | | | | | 3 | Verifying whether given $(V, +, .)$ is a vector space with respect to addition $+$ and | | | | | | | scalar multiplication . | | | | | | 4 | Linear span of a non empty subset of a vector space, determining whether a given | | | | | | | subset of a vector space is a subspace. Showing the set of convergent real sequences | | | | | | | is a subspace of the space of real sequences etc. | | | | | | 5 | Finding basis of a vector space such as $P_3[X]$, $M_3(\mathbb{R})$ etc. verifying whether a set | | | | | | | is a basis of a vector space. Extending basis of a subspace to a basis of a finite | | | | | | | dimensional vector space. | | | | | | 6 | Verifying whether a map $T: X \to Y$ is a linear transformation, finding kernel of a | | | | | | | linear transformation and matrix associated with a linear transformation, verifying | | | | | | | the Rank Nullity theorem. | | | | | #### Reference Books: - (1) S. Lang, Introduction to Linear Algebra, Second Edition, Springer, 1986. - (2) S. Kumaresan, Linear Algebra, A Geometric Approach, Prentice Hall of India Pvt. Ltd, 2000. - (3) M. Artin, Algebra, Prentice Hall of India Private Limited, 1991. - (4) K. HOFFMAN AND R. KUNZE, Linear Algebra, Tata McGraw-Hill, New Delhi, 1971. - (5) G. Strang, Linear Algebra and its applications, Thomson Brooks/Cole, 2006 - (6) L. Smith, Linear Algebra, Springer Verlag, 1984. - (7) A. R. RAO AND P. BHIMA SANKARAN, Linear Algebra, TRIM 2nd Ed. Hindustan Book Agency, 2000. - (8) T. BANCHOFF AND J. WARMERS, Linear Algebra through Geometry, Springer Verlag, New York, 1984. - (9) S. Axler, Linear Algebra done right, Springer Verlag, New York, 2015. - (10) K. Janich, Linear Algebra, Springer Verlag New York, Inc. 1994. - (11) O. Bretcher, Linear Algebra with Applications, Pearson 2013. - (12) G. WILLIAMS, Linear Algebra with Applications. Jones and Bartlett Publishers, Boston, 2001. ## Modality of Assessment: Discipline Specific Core Course (4 Credit Course for BA) #### (A) Internal Assessment - 30 Marks | Sr. No. | Evaluation Type | Marks | | |-----------------|-----------------------------------|-------|--| | 1 | Test | 20 | | | 2 | Assignment/Viva/Test/Presentation | 10 | | | Total: 30 Marks | | | | #### (B) External Examination- 45 Marks - 1. Duration: These examinations shall be of **one and half hours duration**. - 2. Theory Question Pattern | Question | Marks | Questions Based on | |------------|-------|--------------------| | Question 1 | 15 | Unit-I | | Question 2 | 15 | Unit-H | | Question 3 | 15 | Unit-III | #### Practical Examination - 50 Marks | Sr. No. | Evaluation Type | Marks | | |-----------------|-----------------------------------|-------|--| | A | Assignment/Viva/Test/Presentation | 20 | | | В | B Practical Examination 30 | | | | Total: 50 Marks | | | | ## Semester III Course Code: RUAVSCMATPO201 Algebra with SageMath ### Detailed Syllabus | Course Code | Unit | Course/Unit Title | Credits/Hours | |----------------|--------|--|---------------| | | | Symbolic computations using SageMath. Divisibility of numbers using SageMath.
 | | | RUAVSCMATPO201 | Unit I | $3. \ {\rm Sets},$ functions and permutations using SageMath. | 1/15 | | | | 4. Manipulating polynomials using SageMath. | .6 | #### Practicals Based on Algebra using SageMath | | Course Code:RUAVSCMATPO201 | | | | |---------|--|--|--|--| | Sr. No. | Practicals | | | | | 1 | Divisibility of numbers using SageMath. | | | | | 2 | Sets and functions using SageMath. | | | | | 3 | Permutations using SageMath. | | | | | 4 | Manipulating polynomials using SageMath. | | | | #### References: 1. George A. Anastassiou, Razvan A. Mezei (auth.)-Numerical Analysis Using Sage-Springer International Publishing (2015) ## Modality of Assessment: Vocational and Skill Enhancement Course (2 credit course for BA) #### (A) Internal Assessment - 10 Marks • Theory examination for 10 marks will be conducted by the department. #### (B) External Examination- 15 Marks • Theory examination for 15 marks will be conducted by the department. #### (C) Practical Examination - 50 Marks | Sr. No. | Evaluation Type | Marks | |---------|--|-------| | 1 | Assignment/Viva/Test/Presentation | 20 | | 2 | Practical Examination | 30 | | | Total: 50 Marks | | | | AMILIA RILLA | | | | 17 | | #### Semester-III Minor Course in Mathematics Course Code: RUAMILSCO202 Course Title: Linear Algebra-I Type of Course: Minor Course in Mathematics Academic year 2024-25 | CO | CO Description | |-----|---| | CO1 | to experiment with the system of linear equations and matrices. | | CO2 | to identify vector spaces. | | CO3 | to explain properties of vector spaces and subspaces. | | | All Pair air and All Control of the | #### Detailed Syllabus Linear Algebra-I | Course Code | Unit | Course/Unit Title | Credits/Hours | | |--------------|---------|--|---------------|--| | | | System of Linear Equations and Matrices Parametric equation of lines and planes, system of homogeneous and non-homogeneous linear equations, solution of a system of m homogeneous linear equations in n unknowns by elimination and their geometrical interpretation for $(m,n)=(1,2),(1,3),(2,2),(2,3),(3,3);$ | 200 | | | | Unit I | Matrices with real entries; addition, scalar multiplication and multiplication of matrices; transpose of a matrix, types of matrices: zero matrix, identity matrix, scalar matrices, diagonal matrices, upper triangular matrices, lower triangular matrices, symmetric matrices, skew-symmetric matrices, Invertible matrices; identities such as $(AB)^t = B^tA^t$; $(AB)^{-1} = B^{-1}A^{-1}$. | 1)15 | | | | | System of linear equations in matrix form, elementary row operations, row echelon matrix, Gaussian elimination method, to deduce that the system of m homogeneous linear equations in n unknowns has a non-trivial solution if $m < n$. | | | | RUAMILSCO202 | Unit II | Vector Spaces Definition of a real vector space, examples such as \mathbb{R}^n , $\mathbb{R}[X]$, $M_{m \times n}(\mathbb{R})$, space of all real valued functions on a nonempty set. Subspace: definition, examples, lines, planes passing through origin as subspaces of \mathbb{R}^2 , \mathbb{R}^3 respectively, upper triangular matrices, diagonal matrices, symmetric matrices, skew-symmetric matrices as subspaces of $M_n(\mathbb{R})$; $P_n(X) = \{a_0 + a_1X + \cdots + a_nX^n a_i \in \mathbb{R} \ \forall i, \ 0 \leq i \leq n\}$ as a subspace of $\mathbb{R}[X]$, the space of all solutions of the system of m homogeneous linear equations in n unknowns as a subspace of \mathbb{R}^n . Properties of a subspace such as necessary and sufficient condition for a nonempty subset to be a subspace of a vector space, arbitrary intersection of subspaces of a vector space is a subspace, union of two subspaces is a subspace if and only if one is a subset of the other. Linear combination of vectors in a vector space; the linear span $L(S)$ of a nonempty subset S of a vector space, S is a generating set for $L(S)$; $L(S)$ is a vector subspace of V ; linearly independent/linearly dependent subsets of a vector space, examples | 1/15 | | | Course Code | Unit | Course/Unit Title | Credits/Hours | |-------------|----------
---|---------------| | Course Code | Unit III | Bases and Linear Transformations Basis of a finite dimensional vector space, dimension of a vector space, maximal linearly independent subset of a vector space is a basis of a vector space, minimal generating set of a vector space is a basis of a vector space, any two bases of a vector space have the same number of elements, any set of n linearly independent vectors in an n dimensional vector space is a basis, any collection of $n+1$ linearly independent vectors in an n dimensional vector space is linearly dependent, if W_1, W_2 are two subspaces of a vector space V then $W_1 + W_2$ is a subspace of the vector space V of dimension $\dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$, extending any basis of a subspace W of a vector space V to a basis of the vector space V . Linear transformations; kernel $\ker(T)$ of a linear transformation T , matrix associated with a linear transformation T , properties such as: for a linear transformation T , $\ker(T)$ is a subspace of the domain space of T and the image $\operatorname{Image}(T)$ is a subspace of the co-domain space of T . If V, W are real vector spaces with $\{v_1, v_2, \ldots, v_n\}$ a basis of V and $\{w_1, w_2, \ldots, w_n\}$ any vectors in W then there exists a unique linear transformation $T: V \to W$ such that $T(v_j) = w_j \forall j, 1 \leq j \leq n$, Rank Nullity | 1/15 | | | | theorem (statement only) and examples. | | | | Practicals Based on Linear Algebra-I (RUAMIMATPO202) | | | | | |---------|---|--|--|--|--| | Sr. No. | Practicals | | | | | | 1 | Solving homogeneous system of m equations in n unknowns by elimination for | | | | | | 1 | (m,n) = (1,2), (1,3), (2,2), (2,3), (3,3); row echelon form. | | | | | | 2 | Solving system $Ax = b$ by Gauss elimination, Solutions of system of linear Equations. | | | | | | 3 | Verifying whether given $(V, +, .)$ is a vector space with respect to addition $+$ and | | | | | | 3 | scalar multiplication . | | | | | | | Linear span of a non empty subset of a vector space, determining whether a given | | | | | | 4 | subset of a vector space is a subspace. Showing the set of convergent real sequences | | | | | | | is a subspace of the space of real sequences etc. | | | | | | | Finding basis of a vector space such as $P_3[X]$, $M_3(\mathbb{R})$ etc. verifying whether a set | | | | | | 5 | is a basis of a vector space. Extending basis of a subspace to a basis of a finite | | | | | | | dimensional vector space. | | | | | | | Verifying whether a map $T: X \to Y$ is a linear transformation, finding kernel of a | | | | | | 6 | linear transformation and matrix associated with a linear transformation, verifying | | | | | | | the Rank Nullity theorem. | | | | | #### Reference Books: - (1) S. Lang, Introduction to Linear Algebra, Second Edition, Springer, 1986. - (2) S. Kumaresan, Linear Algebra, A Geometric Approach, Prentice Hall of India Pvt. Ltd, 2000. - (3) M. Artin, Algebra, Prentice Hall of India Private Limited, 1991. - (4) K. HOFFMAN AND R. KUNZE, Linear Algebra, Tata McGraw-Hill, New Delhi, 1971. - (5) G. Strang, Linear Algebra and its applications, Thomson Brooks/Cole, 2006 - (6) L. Smith, Linear Algebra, Springer Verlag, 1984. - (7) A. R. RAO AND P. BHIMA SANKARAN, Linear Algebra, TRIM 2nd Ed. Hindustan Book Agency, 2000. - (8) T. BANCHOFF AND J. WARMERS, Linear Algebra through Geometry, Springer Verlag, New York, 1984. - (9) S. Axler, Linear Algebra done right, Springer Verlag, New York, 2015. - (10) K. Janich, Linear Algebra, Springer Verlag New York, Inc. 1994. - (11) O. Bretcher, Linear Algebra with Applications, Pearson 2013. - (12) G. Williams, Linear Algebra with Applications. Jones and Bartlett Publishers, Boston, 2001. ## Modality of Assessment: Minor Course in Mathematics (4 Credit Course for BA) #### (A) Internal Assessment - 30 Marks | Sr. No. | Evaluation Type | Marks | | |-----------------|-----------------------------------|-------|--| | 1 | Test | 20 | | | 2 | Assignment/Viva/Test/Presentation | 10 | | | Total: 30 Marks | | | | #### (B) External Examination- 45 Marks - 1. Duration: These examinations shall be of **two hours duration**. - 2. Theory Question Pattern | Question | Marks | Questions Based on | |------------|-------|--------------------| | Question 1 | 15 | Unit-I | | Question 2 | 15 | Unit-H | | Question 3 | 15 | Unit-III | #### Practical Examination - 50 Marks | Sr. No. | Evaluation Type | Marks | |---------|-----------------------------------|-------| | A | Assignment/Viva/Test/Presentation | 20 | | В | Practical Examination | 30 | | | Total: 50 Marks | | #### Semester IV #### Course Code:RUAMJMATE211 Course Title: Calculus of Several Variables-I Type of Course: Discipline Specific Core Course Academic year 2024-25 | CO | CO Description | |-----|--| | CO1 | to compare properties of functions of several variables with those of functions of one variable. | | CO2 | to deduce geometrical properties of surfaces and lines. | | CO3 | to apply the concept of differentiability to other sciences | | | All Indian All Control of the All Indian | | | 93 | #### Detailed Syllabus Calculus of Several Variables-I | Course Code | Unit | Course/Unit Title | Credits/Hours | |--------------|----------|---|---------------| | | Unit I | Functions of several variables Euclidean space, Rⁿ- norm, inner product, distance between two points, open ball in Rⁿ, definition of an
open set / neighbourhood, sequences in Rⁿ, convergence of sequences (these concepts should be specifically discussed for n = 2 and n = 3). Functions from Rⁿ → R (scalar fields) and from Rⁿ → Rⁿ (Vector fields), sketching of regions in R² and R³. Graph of a function, level sets, cartesian coordinates, polar coordinates, spherical coordinates, cylindrical coordinates and conversions from one coordinate system to other. Iterated limits, limits and continuity of functions, basic results on limits and continuity of sum, difference, scalar multiples of vector fields, continuity of components of vector fields. Directional derivatives and partial derivatives of scalar fields. Mean value theorem for derivatives of scalar fields. | 1)15 | | RUAMJMATE211 | Unit II | Differentiation Differentiability of a scalar field at a point (in terms of linear transformation) and in an open set, total derivative, uniqueness of total derivative of a differentiable function at a point, basic results on continuity, differentiability, partial derivative and directional derivative. Gradient of a scalar field, geometric properties of gradient, level sets and tangent planes. Chain rule for scalar fields. Higher order partial derivatives, mixed partial derivatives, sufficient condition for equality of mixed partial derivative. | 1/15 | | P. Will | Onit III | Applications Second order Taylor's formula for scalar fields. Differentiability of vector fields, definition of differentiability of a vector field at a point Jacobian and Hessian matrix, differentiability of a vector field at a point implies continuity, the chain rule for derivative of vector fields (statement only). Mean value inequality. Maxima, minima and saddle points. Second derivative test for extrema of functions of two variables. Method of Lagrange multipliers. | 1/15 | #### Practicals Based on DSC-I | | Course Code:RUAMJMATPE211 | |---------|--| | Sr. No. | Practicals | | 1 | Sequences in \mathbb{R}^2 and \mathbb{R}^3 , limits and continuity of scalar fields and vector fields, using | | 1 | definition and otherwise, iterated limits. | | 2 | Computing directional derivatives, partial derivatives and mean value theorem of | | | scalar fields. | | 3 | Total derivative, gradient, level sets and tangent planes. | | 4 | Chain rule, higher order derivatives and mixed partial derivatives of scalar fields. | | 5 | Taylor's formula, differentiation of a vector field at a point, finding Jacobian and | | 9 | Hessian matrix, Mean value inequality. | | 6 | Finding maxima, minima and saddle points, second derivative test for extrema of | | 0 | functions of two variables and method of Lagrange multipliers. | #### Reference Books: - (1) S. R. Ghorpade, B. V. Limaye, A Course in Multivariable Calculus and Analysis, Springer, 2010. - (2) T. APOSTOL, Calculus, Vol. 2, John Wiley, 1969. Paulinai ain - (3) J. Stewart, Calculus, Brooke/Cole Publishing Co., 1994. - (4) G.B. Thomas, R. L. Finney, Calculus and Analytic Geometry, Ninth Ed.(ISE Reprint), Addison-Wesley, Reading Mass, 1998. #### Course Code: RUAMJMATE212 Course Title: Linear Algebra-II #### Type of Course: Discipline Specific Core Course Academic year 2024-25 | CO CO Description CO1 to examine dimensions of vector spaces. CO2 to explain the concept of determinants. CO3 to apply the concept of determinants to geometry. CO4 to identify inner product spaces. CO5 to outline properties of inner products. | | | |--|-----|--| | CO2 to explain the concept of determinants. CO3 to apply the concept of determinants to geometry. CO4 to identify inner product spaces. CO5 to outline properties of inner products. | CO | CO Description | | CO3 to apply the concept of determinants to geometry. CO4 to identify inner product spaces. CO5 to outline properties of inner products. | CO1 | to examine dimensions of vector spaces. | | CO3 to apply the concept of determinants to geometry. CO4 to identify inner product spaces. CO5 to outline properties of inner products. | CO2 | to explain the concept of determinants. | | CO5 to outline properties of inner products. CO5 to outline properties of inner products. | | | | Raininarain Ruitonoin Raininarain Rainina Rain | CO4 | to identify inner product spaces. | | Paininatain Pilia | CO5 | to outline properties of inner products. | | | | and the state of t | | 26 | | | #### Detailed Syllabus (Linear Algebra-II) | Course Code | Unit | Course/Unit Title | Credits/Hours | |--------------|---------|---|---------------| | | | Vector Spaces and Linear Transformations | | | | | 1. Definition of a real vector space, examples such as \mathbb{R}^n , $\mathbb{R}[X]$, $M_{m \times n}(\mathbb{R})$, space of all real valued functions on a nonempty set. | | | | | 2. Subspace: definition, examples, lines, planes passing through origin as subspaces of \mathbb{R}^2 , \mathbb{R}^3 respectively, upper triangular matrices, diagonal matrices, symmetric matrices, skew-symmetric matrices as subspaces of $M_n(\mathbb{R})$; $P_n(X) = \{a_0 + a_1X + \cdots + a_nX^n a_i \in \mathbb{R} \ \forall i, \ 0 \leq i \leq n\}$ as a
subspace of $\mathbb{R}[X]$, the space of all solutions of the system of m homogeneous linear equations in n unknowns as a subspace of \mathbb{R}^n . | 316 | | | Unit I | 3. Linear combination of vectors in a vector space; the linear span $L(S)$ of a nonempty subset S of a vector space, S is a generating set for $L(S)$; $L(S)$ is a vector subspace of V ; linearly independent/linearly dependent subsets of a vector space, examples | 1/15 | | | | 4. Review of linear transformations, kernel and image of a linear transformation, Rank-Nullity theorem (with proof), linear isomorphisms, inverse of a linear isomorphism, any n -dimensional real vector space is isomorphic to \mathbb{R}^n . | | | | | 5. Linear transformations; kernel $\ker(T)$ of a linear transformation T , matrix associated with a linear transformation T , properties such as: for a linear transformation T , $\ker(T)$ is a subspace of the domain space of T and the image $\operatorname{Image}(T)$ is a subspace of the co-domain space of T . If V,W are real vector | | | | | spaces with $\{v_1, v_2, \ldots, v_n\}$ a basis of V and $\{w_1, w_2, \ldots, w_n\}$ any vectors in W then there exists a unique linear transformation $T: V \to W$ such that $T(v_j) = w_j \forall j, 1 \leq j \leq n$, Rank Nullity theorem (statement only) and examples. | | | | | Determinants | | | | | 1. Definition of determinant as an n -linear skew-symmetric function from $\mathbb{R}^n \times \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathbb{R}$ such that determinant of (E^1, E^2, \dots, E^n) is 1, where E^j denote the j^{th} column of the $n \times n$ identity matrix I_n . | | | RUAMJMATE212 | Unit II | 2. Existence and uniqueness of determinant function via permutations, Computation of determinant of 2×2 , 3×3 matrices, diagonal matrices, basic results on determinants such as $\det(A^t) = \det(A)$, $\det(AB) = \det(A) \det(B)$, Laplace expansion of a determinant, Vandermonde determinant, determinant of upper triangular matrices and lower triangular matrices. | 1/15 | | Rail | | 3. Linear dependence and independence of vectors in \mathbb{R}^n using determinants, the existence and uniqueness of the system $Ax = b$, where A is $n \times n$ matrix A , with $\det(A) \neq 0$, cofactors and minors, adjoint of an $n \times n$ matrix A , basic results such as $A.\mathrm{Adj}(A) = \det(A)I_n$. An $n \times n$ real matrix A is invertible if and only if $\det(A) \neq 0$, $A^{-1} = \frac{1}{\det(A)}\mathrm{Adj}(A)$ for an invertible matrix A , Cramer's rule. | | | Course Code | Unit | Course/Unit Title | Credits/Hours | |-------------|----------|--|---------------| | | | Inner Product Spaces 1. Dot product in \mathbb{R}^n , Definition of an inner product on a vector space over \mathbb{R} , | | | | | examples of inner product. 2. Norm of a vector, Cauchy-Schwarz inequality, triangle inequality, orthogonality | | | | Unit III | of vectors, Pythagorus theorem and geometric applications in \mathbb{R}^2 , Projections on a line, the projection being the closest approximation, Orthogonal complements of a subspace, orthogonal complements in \mathbb{R}^2 and \mathbb{R}^3 , orthogonal sets | 1/15 | | | | and orthonormal sets in an inner product space, orthogonal and orthonormal bases, Gram-Schmidt orthogonalization process, simple examples in \mathbb{R}^3 , \mathbb{R}^4 . | 10 | #### Practicals Based on DSC-II | | Course Code:RUAMJMATPE212 | |---------|--| | Sr. No. | Tutorials | | 1 | Examples of vector spaces and subspaces. | | 2 | Finding matrix of a linear transformation in the given bases. | | 3 | Determinants, calculating determinants of 2×2 , 3×3 matrices, $n \times n$ diagonal, | | | upper triangular matrices using Laplace expansion. | | 4 | Finding inverses of 3×3 matrices using adjoint. Verifying $A.AdjA = (Det A)I_3$ | | 5 | Examples of inner product spaces and orthogonal complements in \mathbb{R}^2 and \mathbb{R}^3 . | | 6 | Gram-Schmidt method | #### Reference Books: - (1) S. Lang, Introduction to Linear Algebra, Springer Verlag, 1997 - (2) S. Kumarasen, Linear Algebra A geometric approach, Prentice Hall of India Private Ltd, 2000 - (3) M. Artin, Algebra, Prentice Hall of India Private Ltd. 1991 - (4) K. Hoffman, R.Kunze, Linear algebra, Tata McGraw-Hill, New Delhi. 1971 - (5) G. STRANG, Linear Algebra and its applications, International student Edition. 2016 - (6) L. Smith, Linear Algebra and Springer Verlag. 1978 - (7) A. R. RAO AND P.BHIMASANKARAN, Linear Algebra, Tata McGraw-Hill, New Delhi. 2000 - (8) T. BANCHOFF, J. WERMER, Linear Algebra through Geometry, Springer Verlag New York, 1984. - (9) S. Axler, Linear Algebra done right, Springer Verlag, New York, 2015 - (10) K. Janich, Linear Algebra, Springer, 1994 - (11) O. Bretcher, Linear Algebra with Applications, Prentice Hall, 1996 - Raininanain Ruia Antonomona College ## Modality of Assessment: Discipline Specific Core Course (4 Credit Course for BA) #### (A) Internal Assessment - 30 Marks | Sr. No. | Evaluation Type | Marks | |---------|-----------------------------------|-------| | 1 | Test | 20 | | 2 | Assignment/Viva/Test/Presentation | 10 | | | Total: 30 Marks | A 03 | #### (B) External Examination- 45 Marks - 1. Duration: These examinations shall be of **one and half hours duration**. - 2. Theory Question Pattern | Question | Marks | Questions Based on | |------------|-------|--------------------| | Question 1 | 15 | Unit-I | | Question 2 | 15 | Unit-H | | Question 3 | 15 | Unit-III | #### Practical Examination - 50 Marks | Sr. No. | Evaluation Type | Marks | |---------|-----------------------------------|-------| | A | Assignment/Viva/Test/Presentation | 20 | | В | Practical Examination | 30 | | | Total: 50 Marks | | # Semester IV Course Code: RUASECMATPE211 Calculus with SageMath-III Detailed Syllabus | Course Code | Unit | Course/Unit Title | Credits/Hours | |----------------|--------|---|---------------| | RUASECMATPE211 | Unit I | Defining real valued functions of several variables in SageMath. Derivatives of functions of several variables and their applications in SageMath. Plotting graphs of functions in 2,3- variables. Drawing vector fields using quiver, level curves and surfaces of functions in 2,3-variables. Solving algebraic equations using SageMath. Parametric curves and surfaces using SageMath. | 1/15 | #### Practicals Based on Calculus with SageMath-III | Course Code:RUASECMATPE211 | | | | | |----------------------------|---|--|--|--| | Sr. No. | Practicals | | | | | 1 | Evaluating partial, directional and total derivatives of scalar and vector-fields, | | | | | 1 | Lower and Upper Sums, integrals for scalar valued functions of one variable | | | | | 2 | Verifying theorems on maxima and minima of functions of several variables in Sage- | | | | | 2 | math and implementation of method of Lagrange Multipliers in SageMath | | | | | | Plotting graphs of functions in 2,3- variables. Drawing vector fields using quiver, | | | | | 3 | level curves and surfaces of functions in 2,3-variables. Parametric curves and surfaces | | | | | | using SageMath | | | | | 4 | First order ODE using Picard's method and Euler's method | | | | #### References: 1. George A. Anastassiou, Razvan A. Mezei (auth.)-Numerical Analysis Using Sage-Springer International Publishing (2015) ## Modality of Assessment: Vocational and Skill Enhancement Course (2 Credit Course for BA) #### (A) Internal Assessment - 10 Marks • Theory examination for 10 marks will be conducted by the department. #### (B) External Examination- 15 Marks • Theory examination for 15 marks will be conducted by the department. #### (C) Practical Examination - 50 Marks | Sr. No. | Evaluation Type | Marks | |---------|--|-------| | 1 | Assignment/Viva/Test/Presentation | 20 | | 2 | Practical Examination | 30 | | | Total: 50 Marks | | | | AIRIR AIR AIR AIR AIR AIR AIR AIR AIR AI | | | | 29 | | #### Semester-IV Course Code:RUAMIMATE212 Course Title: Linear Algebra-II Type of Course: Minor Course in Mathematics Academic year 2024-25 | CO | CO Description | |-----
--| | CO1 | to examine dimensions of vector spaces. | | CO2 | to explain the concept of determinants. | | CO3 | to apply the concept of determinants to geometry. | | CO4 | to identify inner product spaces. | | CO5 | to outline properties of inner products. | | | All Hat all Rulia Ruli | | | $\mathfrak{I}\mathfrak{I}$ | #### Detailed Syllabus (Linear Algebra-II) | Course Code | Unit | Course/Unit Title | Credits/Hours | |--------------|---------|---|---------------| | | | Vector Spaces and Linear Transformations | | | | | 1. Definition of a real vector space, examples such as \mathbb{R}^n , $\mathbb{R}[X]$, $M_{m \times n}(\mathbb{R})$, space of all real valued functions on a nonempty set. | | | | | 2. Subspace: definition, examples, lines, planes passing through origin as subspaces of \mathbb{R}^2 , \mathbb{R}^3 respectively, upper triangular matrices, diagonal matrices, symmetric matrices, skew-symmetric matrices as subspaces of $M_n(\mathbb{R})$; $P_n(X) = \{a_0 + a_1X + \cdots + a_nX^n a_i \in \mathbb{R} \ \forall i, \ 0 \leq i \leq n\}$ as a subspace of $\mathbb{R}[X]$, the space of all solutions of the system of m homogeneous linear equations in n unknowns as a subspace of \mathbb{R}^n . | 9/6 | | | Unit I | 3. Linear combination of vectors in a vector space; the linear span $L(S)$ of a nonempty subset S of a vector space, S is a generating set for $L(S)$; $L(S)$ is a vector subspace of V ; linearly independent/linearly dependent subsets of a vector space, examples | 1/15 | | | | 4. Review of linear transformations, kernel and image of a linear transformation, Rank-Nullity theorem (with proof), linear isomorphisms, inverse of a linear isomorphism, any n -dimensional real vector space is isomorphic to \mathbb{R}^n . | | | | | 5. Linear transformations; kernel $\ker(T)$ of a linear transformation T , matrix associated with a linear transformation T , properties such as: for a linear transformation T , $\ker(T)$ is a subspace of the domain space of T and the image $\operatorname{Image}(T)$ is a subspace of the co-domain space of T . If V,W are real vector | | | | | spaces with $\{v_1, v_2, \ldots, v_n\}$ a basis of V and $\{w_1, w_2, \ldots, w_n\}$ any vectors in W then there exists a unique linear transformation $T: V \to W$ such that $T(v_j) = w_j \forall j , 1 \leq j \leq n$, Rank Nullity theorem (statement only) and examples. | | | | | Determinants | | | | | 1. Definition of determinant as an n -linear skew-symmetric function from $\mathbb{R}^n \times \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathbb{R}$ such that determinant of (E^1, E^2, \dots, E^n) is 1, where E^j denote the j^{th} column of the $n \times n$ identity matrix I_n . | | | RUAMIMATE212 | Unit II | 2. Existence and uniqueness of determinant function via permutations, Computation of determinant of 2×2 , 3×3 matrices, diagonal matrices, basic results on determinants such as $\det(A^t) = \det(A)$, $\det(AB) = \det(A) \det(B)$, Laplace expansion of a determinant, Vandermonde determinant, determinant of upper triangular matrices and lower triangular matrices. | 1/15 | | Rail | | 3. Linear dependence and independence of vectors in \mathbb{R}^n using determinants, the existence and uniqueness of the system $Ax = b$, where A is $n \times n$ matrix A , with $\det(A) \neq 0$, cofactors and minors, adjoint of an $n \times n$ matrix A , basic results such as $A.\mathrm{Adj}(A) = \det(A)I_n$. An $n \times n$ real matrix A is invertible if and only if $\det(A) \neq 0$, $A^{-1} = \frac{1}{\det(A)}\mathrm{Adj}(A)$ for an invertible matrix A , Cramer's rule. | | | Course Code | Unit | Course/Unit Title | Credits/Hours | |-------------|----------|--|---------------| | | | Inner Product Spaces 1. Dot product in \mathbb{R}^n , Definition of an inner product on a vector space over \mathbb{R} , | | | | | examples of inner product. 2. Norm of a vector, Cauchy-Schwarz inequality, triangle inequality, orthogonality | | | | Unit III | of vectors, Pythagorus theorem and geometric applications in \mathbb{R}^2 , Projections on a line, the projection being the closest approximation, Orthogonal complements of a subspace, orthogonal complements in \mathbb{R}^2 and \mathbb{R}^3 , orthogonal sets | 1/15 | | | | and orthonormal sets in an inner product space, orthogonal and orthonormal bases, Gram-Schmidt orthogonalization process, simple examples in \mathbb{R}^3 , \mathbb{R}^4 . | 100 | | | Practicals Based on Linear Algebra-II (RUAMIMATPE212) | | | | | | | |---------|---|--|--|--|--|--|--| | Sr. No. | Practicals | | | | | | | | 1 | Examples of vector spaces and subspaces. | | | | | | | | 2 | Finding matrix of a linear transformation in the given bases. | | | | | | | | 3 | Determinants, calculating determinants of 2×2 , 3×3 matrices, $n \times n$ diagonal | | | | | | | | J | upper triangular matrices using Laplace expansion. | | | | | | | | 4 | Finding inverses of 3×3 matrices using adjoint. Verifying $A.AdjA = (DetA)I_3$ | | | | | | | | 5 | Examples of inner product spaces and orthogonal complements in \mathbb{R}^2 and \mathbb{R}^3 . | | | | | | | | 6 | Gram-Schmidt method | #### Reference Books: - (1) S. Lang, Introduction to Linear Algebra, Springer Verlag, 1997 - (2) S. Kumarasen, Linear Algebra A geometric approach, Prentice Hall of India Private Ltd, 2000 - (3) M. Artin, Algebra, Prentice Hall of India Private Ltd. 1991 - (4) K. HOFFMAN, R.KUNZE, Linear algebra, Tata McGraw-Hill, New Delhi. 1971 - (5) G. Strang, Linear Algebra and its applications, International student Edition, 2016 - (6) L. Smith, Linear Algebra and Springer Verlag. 1978 - (7) A. R. RAO AND P.BHIMASANKARAN, Linear Algebra, Tata McGraw-Hill, New Delhi. 2000 - (8) T. BANCHOFF, J. WERMER, Linear Algebra through Geometry, Springer Verlag New York, 1984. - (9) S. Axler , Linear Algebra done right, Springer Verlag, New York, 2015 - (10) K. Janich, Linear Algebra, Springer, 1994 Paininairair. - (11) O. Bretcher, Linear Algebra with Applications, Prentice Hall, 1996 - (12) G. Williams, Linear Algebra with Applications, Narosa Publication, 1984 - (13) H. Anton, Elementary Linear Algebra, Wiley, 2014. ## Modality of Assessment: Minor Course in Mathematics (4 Credit Course for BA) #### (A) Internal Assessment - 30 Marks | Sr. No. | Evaluation Type | Marks | |---------|-----------------------------------|-------| | 1 | Test | 20 | | 2 | Assignment/Viva/Test/Presentation | 10 | | | Total: 30 Marks | | #### (B) External Examination- 45 Marks - 1. Duration: These examinations shall be of **one and half hours duration**. - 2. Theory Question Pattern | Question | Marks | Questions Based on | |------------|-------|--------------------| | Question 1 | 15 | Unit-I | | Question 2 | 15 | Unit-II | | Question 3 | 15 | Unit-III | #### Practical Examination - 50 Marks | Sr. No. | Evaluation Type | Marks | | | | | |---------|-----------------------------------
-------|--|--|--|--| | A | Assignment/Viva/Test/Presentation | 20 | | | | | | В | Practical Examination | 30 | | | | | | | Total: 50 Marks | | | | | | Resolution Number: AC/II(23-24).2.RUA12 #### S. P. Mandali's #### Ramnarain Ruia Autonomous College Affiliated to Mumbai University Syllabus for Program: T.Y.B.A. Program Code: B.A. (As per the guidelines of National Education Policy 2020-Academic year 2024-25) (Choice based Credit System) #### Graduate Attributes | | Recall and explain acquired scientific knowledge in a comprehensive manner a | |-----|--| | GA1 | apply the skills acquired in their chosen discipline. Interpret scientific ideas ε | | | relate its interconnectedness to various fields in science. | | | Evaluate scientific ideas critically, analyze problems, explore options for pract | | GA2 | demonstrations, illustrate work plans and execute them, organize data and dr | | | inferences. | | | Explore and evaluate digital information and use it for knowledge upgradati | | GA3 | Apply relevant information so gathered for analysis and communication using | | | propriate digital tools. | | GA4 | Ask relevant questions, understand scientific relevance, hypothesize a scientific pr | | | lem, construct and execute a project plan and analyse results. | | | Take complex challenges, work responsibly and independently, as well as in cohes | | GA5 | with a team for completion of a task. Communicate effectively, convincingly and | | | an articulate manner. | | GA6 | Apply scientific information with sensitivity to values of different cultural grou | | | Disseminate scientific knowledge effectively for upliftment of the society. | | | Follow ethical practices at work place and be unbiased and critical in interpretat | | GA7 | of scientific data. Understand the environmental issues and explore sustaina | | | solutions for it. | | | Keep abreast with current scientific developments in the specific discipline and ad- | | GA8 | to technological advancements for better application of scientific knowledge a | | | lifelong learner | #### **Program Outcomes** | PO1 in engineering, science technology and mathematical sciences. It should also enhance the subject specific knowledge and help in creating jobs in various sectors. PO2 Demonstrate educational skills in areas of analysis, algebra, differential equations. Graph Theory and combinatorics etc. Apply knowledge, understanding and skills to identify the difficult / unsolved problems in mathematics and to collect the required information in possible range sources and try to analyse and evaluate these problems using appropriate methologies. Fulfil one's learning requirements in mathematics, drawing from a range of complete temporary research works and their applications in diverse areas of mathematics sciences. PO5 Apply one's disciplinary knowledge and skills in mathematics in newer domains a uncharted areas. | 10 | Description-A student completing Bachelor's Degree in Science/Arts p | |--|------|---| | PO1 in engineering, science technology and mathematical sciences. It should also enhat the subject specific knowledge and help in creating jobs in various sectors. PO2 Demonstrate educational skills in areas of analysis, algebra, differential equations Graph Theory and combinatorics etc. Apply knowledge, understanding and skills to identify the difficult / unsolved proposition lems in mathematics and to collect the required information in possible range sources and try to analyse and evaluate these problems using appropriate methologies. Fulfil one's learning requirements in mathematics, drawing from a range of contemporary research works and their applications in diverse areas of mathematics sciences. PO5 Apply one's disciplinary knowledge and skills in mathematics in newer domains a uncharted areas. PO6 Identify challenging problems in mathematics and obtain well-defined solutions. Exhibit subject-specific transferable knowledge in mathematics relevant to job tree and employment opportunities. | | gram in the subject of Mathematics will be able to: | | the subject specific knowledge and help in creating jobs in various sectors. Demonstrate educational skills in areas of analysis, algebra, differential equations of Graph Theory and combinatorics etc. Apply knowledge, understanding and skills to identify the difficult / unsolved problems in mathematics and to collect the required information in possible range sources and try to analyse and evaluate these problems using appropriate methologies. Fulfil one's learning requirements in mathematics, drawing from a range of contemporary research works and their applications in diverse areas of mathematics sciences. Apply one's disciplinary knowledge and skills in mathematics in newer domains a uncharted areas. PO5 Identify challenging problems in mathematics and obtain well-defined solutions. Exhibit subject-specific transferable knowledge in mathematics relevant to job treating and employment opportunities. | | Demonstrate fundamental systematic knowledge of mathematics and its application | | Demonstrate educational skills in areas of analysis, algebra, differential equations of Graph Theory and combinatorics etc. Apply knowledge, understanding and skills to identify the difficult / unsolved problems in mathematics and to collect the required information in possible range sources and try to analyse and evaluate these problems using appropriate methologies. Fulfil one's learning requirements in mathematics, drawing from a range of contemporary research works and their applications in diverse areas of mathematics sciences. Apply one's disciplinary knowledge and skills in mathematics in newer domains a uncharted areas. PO5 Identify challenging problems in mathematics and obtain well-defined solutions. Exhibit subject-specific transferable knowledge in mathematics relevant to job treat and employment opportunities. | PO1 | in engineering, science technology and mathematical sciences. It should also enhance | | PO3 Graph Theory and combinatorics etc. Apply knowledge, understanding and skills to identify the difficult / unsolved pr lems in mathematics and to collect the required information in possible range sources and try to analyse and evaluate these problems using appropriate meth ologies. Fulfil one's learning requirements in mathematics, drawing from a range of c temporary research works and their applications in diverse areas of mathematis sciences. PO5 Apply one's disciplinary knowledge and skills in mathematics in newer domains a uncharted areas. PO6 Identify challenging problems in mathematics and obtain well-defined solutions. Exhibit subject-specific transferable knowledge in mathematics relevant to job tree and employment opportunities. | | the subject specific knowledge and help in creating jobs in various sectors. | | Apply knowledge, understanding and skills to identify the difficult / unsolved pr lems in mathematics and to collect the required information in possible range sources and try to analyse and evaluate these problems using appropriate meth ologies. Fulfil one's learning requirements in mathematics, drawing from a range of c temporary research works and their applications in diverse areas of mathematic sciences. PO5 Apply one's disciplinary knowledge and skills in mathematics in newer domains a uncharted areas. PO6 Identify challenging problems in mathematics and obtain well-defined solutions. Exhibit subject-specific transferable knowledge in mathematics relevant to job tree and employment opportunities. | PO2 | Demonstrate educational skills in areas of analysis, algebra, differential equation | | lems in mathematics and to collect the required information in possible range sources and try to analyse and evaluate these problems using appropriate methologies. Fulfil one's learning requirements in mathematics, drawing from a range of contemporary research works and their applications in diverse areas of mathematics sciences. PO5 Apply one's disciplinary knowledge and skills in mathematics in newer domains a uncharted areas. PO6 Identify challenging problems in mathematics and obtain well-defined solutions. Exhibit subject-specific transferable knowledge in mathematics relevant to job treatment and employment opportunities. | 1 02 | Graph Theory and combinatorics etc. | | sources and try to analyse and evaluate these problems using appropriate methologies. Fulfil one's learning requirements in mathematics, drawing from a range of composition temporary research works and their applications in diverse areas of mathematic sciences. PO5 Apply one's disciplinary knowledge and skills in mathematics in newer domains a uncharted areas. PO6 Identify challenging problems in mathematics and obtain well-defined solutions. Exhibit subject-specific
transferable knowledge in mathematics relevant to job tree and employment opportunities. | | Apply knowledge, understanding and skills to identify the difficult / unsolved pr | | sources and try to analyse and evaluate these problems using appropriate methologies. Fulfil one's learning requirements in mathematics, drawing from a range of contemporary research works and their applications in diverse areas of mathematics sciences. PO5 Apply one's disciplinary knowledge and skills in mathematics in newer domains a uncharted areas. PO6 Identify challenging problems in mathematics and obtain well-defined solutions. Exhibit subject-specific transferable knowledge in mathematics relevant to job tree and employment opportunities. | DO3 | lems in mathematics and to collect the required information in possible range | | Fulfil one's learning requirements in mathematics, drawing from a range of contemporary research works and their applications in diverse areas of mathematics sciences. PO5 Apply one's disciplinary knowledge and skills in mathematics in newer domains a uncharted areas. PO6 Identify challenging problems in mathematics and obtain well-defined solutions. Exhibit subject-specific transferable knowledge in mathematics relevant to job tree and employment opportunities. | 1 03 | sources and try to analyse and evaluate these problems using appropriate meth- | | PO4 temporary research works and their applications in diverse areas of mathematics sciences. PO5 Apply one's disciplinary knowledge and skills in mathematics in newer domains a uncharted areas. PO6 Identify challenging problems in mathematics and obtain well-defined solutions. Exhibit subject-specific transferable knowledge in mathematics relevant to job tree and employment opportunities. | | ologies. | | Apply one's disciplinary knowledge and skills in mathematics in newer domains a uncharted areas. PO6 Identify challenging problems in mathematics and obtain well-defined solutions. Exhibit subject-specific transferable knowledge in mathematics relevant to job tree and employment opportunities. | | Fulfil one's learning requirements in mathematics, drawing from a range of c | | Apply one's disciplinary knowledge and skills in mathematics in newer domains a uncharted areas. PO6 Identify challenging problems in mathematics and obtain well-defined solutions. Exhibit subject-specific transferable knowledge in mathematics relevant to job tree and employment opportunities. | PO4 | temporary research works and their applications in diverse areas of mathematic | | PO5 uncharted areas. PO6 Identify challenging problems in mathematics and obtain well-defined solutions. Exhibit subject-specific transferable knowledge in mathematics relevant to job tresand employment opportunities. | | sciences. | | PO6 Identify challenging problems in mathematics and obtain well-defined solutions. Exhibit subject-specific transferable knowledge in mathematics relevant to job trest and employment opportunities. | PO5 | Apply one's disciplinary knowledge and skills in mathematics in newer domains a | | PO7 Exhibit subject-specific transferable knowledge in mathematics relevant to job tree and employment opportunities. | 1 05 | A U | | and employment opportunities. | PO6 | Identify challenging problems in mathematics and obtain well-defined solutions. | | and employment opportunities. | | Exhibit subject-specific transferable knowledge in mathematics relevant to job tree | | 2-aininatrain | PO7 | Exhibit subject specific transiciable kilowicege in mathematics relevant to job treat | | | PO7 | | #### Credit Structure for FYBA/BSc/BVoc/BACM | Semes
ter | Subjec | DS | Subjec
t 2 | GE/
OE
course | Vocationa
l and Skill
Enhance
ment
Course
(VSC) &
SEC | Ability
Enhancemen
t Course/
VEC/IKS | OJT/FP/CE
PCC, RP | Total
Ored
its | |--------------|------------------|--|------------------|---------------------|---|---|----------------------|----------------------| | 1 | 4
(3T+1
P) | E | 4
(3T+1
P) | 4
(3T+1
P) | VSC-
2(1T+1P
) Sub 1+
SEC -2
(1T+1P) | AEC-2
(CSK) +
VEC-2
(Understan
ding India)
+ IKS-2 | 5 | 22 | | 2 | 4
(3T+1
P) | ~ | 4
(3T+1
P) | 3T+1
P) | VSC-
2(1T+1P
) Sub 2+
SEC -2
(1T+1P) | AEC-2
(CSK)+
VEC-2
(Env Sc) | CC-2 | 22 | | Total | 8 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 8 | 8 | 8 | 10 | 2 | 44 | Exit option: award of UG certificate in Major with 44 credits and an additional 4 credit Core NSQF course/ Internship or Continue with Major and Minor #### Credit Structure for SYBA/BSc/BVoc/BACM | Semest
er | Subject
(Major | | Subjec
t 2
(Mino
r) | GE/
OE
cours
e | Vocational
and Skill
Enhanceme
nt Course
(VSC) &
SEC | Ability
Enhancement
Course/
VEC/IKS | OJT/FP/CEPC
C, RP | Total
Credi | |--------------|----------------------------------|---|------------------------------|-------------------------|---|--|----------------------|----------------| | 3 | Major 8
4*2/
(3T+1P)
*2 | E | Minor
4
(3T+1
P) | 2 | VSC-2-
Major | AEC-2 MIL
(Marathi/Hin
di) | FP -2, CC-2 | 22 | | 4 | Major 8
4*2/
(3T+1P)
*2 | | Minor
4
(3T+1
P) | 2 | SEC-2 | AEC-2 MIL
(Marathi/
Hindi) | CEP-2, CC-2 | 22 | | Total | 16 | | 8 | 4 | 4 | 4 | 8 | 44 | | Exit opti | ion: award | | | | | its and an addition
h Major and Min | onal 4 credit Core | e NSQF | No change for TYBA/BSC (Netain the old format) #### **Credit structure for MA/MSC** | Semester | Mandatory | Elective | R
M | OJT/F
P | RP/
Internship | Credit | Q | |------------------|-----------|----------|--------|------------|-------------------|--------|---| | 1 | 14 | 4 | 4 | 0 | 0 | 22 | | | I | 14 | 4 | 4 | 0 | \$ | 22 | | | 2 | 14 | 4 | 0 | 4 FP | 20 | 22 | | | 3 | 12 | 4 | 0 | 0 | 6 RP | 22 | | | 4 | 8 | 4 | \d. | 317 | 10 OJT | 22 | | | Total
CREDITS | 48 | 16 | 4 | 4 | 16 | 88 | | Raining And Andrews Regularity ## Course Code: RUSMAT501/RUAMAT501 Course Title: Integral Calculus Academic Year: 2024-25 | CO | CO Description | Ć | |-----|--|----| | CO1 | to apply concepts of multiple integrals in the field of physics. | 10 | | CO2 | to apply concepts of line integrals in the field of physics. | | | CO3 | to apply concepts of surface integrals in the field of physics. |) | #### Unit I: Multiple Integrals (15 Lectures) Definition of double (respectively: triple) integral of a function bounded on a rectangle (respectively: box), Geometric interpretation as area and volume. Fubini's Theorem over rectangles and any closed bounded sets, Iterated Integrals. Basic properties of double and triple integrals proved using the Fubini's theorem such as; Integrability of the sums, scalar multiples, products, and (under suitable conditions) quotients of integrable functions, Formulae for the integrals of sums and scalar multiples of integrable functions, Integrability of continuous functions. More generally, integrability of bounded functions having finite number of points of discontinuity, Domain additivity of the integral. Integrability and the integral over arbitrary bounded domains. Change of variables formula (Statement only), Polar, cylindrical and spherical coordinates and integration using these coordinates. Differentiation under the integral sign. Applications to finding the center of gravity and moments of inertia. #### Unit II: Line Integrals (15 Lectures) Review of Scalar and Vector fields on \mathbb{R}^n . Vector Differential Operators, Gradient Paths (parametrized curves) in \mathbb{R} (emphasis on \mathbb{R} and \mathbb{R}), Smooth and piecewise smooth paths, Closed paths, Equivalence and orientation preserving equivalence of paths. Definition of the line integral of a vector field over a piecewise smooth path, Basic properties of line integrals including linearity, path-additivity and behavior under a change of parameters, Examples. Line integrals of the gradient vector field, Fundamental Theorem of Calculus for Line Integrals, Necessary and sufficient conditions for a vector field to be conservative, Green's Theorem (proof in the case of rectangular domains). Applications to evaluation of line integrals. #### Unit III: : Surface Integrals (15 Lectures) Parameterized surfaces. Smoothly equivalent parameterizations, Area of such surfaces. Definition of surface integrals of scalar-valued functions as well as of vector fields defined on a surface. Curl and divergence of a vector field, Elementary identities involving gradient, curl and divergence. Stoke's Theorem (proof assuming the general form of Green's Theorem), Examples. Gauss' Divergence Theorem (proof only in the case of cubical domains), Examples. | Practica | als Based on Course: RUSMAT501/RUAMAT501. Course Coder RUSMATP501/RUA | |----------|---| | Sr. No. | Practicals | | 1 | Evaluation of double and triple integrals. | | 2 | Change of variables in double and triple integrals and applications. | | 3 | Line integrals of scalar and vector fields | | 4 | Green's theorem, conservative field and applications | | 5 | Evaluation of surface integrals | | 6 | Stoke's and Gauss divergence theorem | | 7 | Miscellaneous theory questions. | #### **Reference Books:** - (1) T Apostol, Mathematical Analysis, Second Ed., Narosa, New Delhi. 1947. - (2) R. COURANT AND F. JOHN, Introduction to Calculus and Analysis, Vol.2, Springer Verlag, New York, 1989. - (3) W. Fleming, Functions of Several Variables, Second Ed., Springer-Verlag, New York, 1977. -
(4) M. H. PROTTER AND C. B. MORREY, JR., CIntermediate Calculus, Second Ed., Springer-Verlag, New York, 1995. - (5) G. B. Thomas and R. L. Finney, Calculus and Analytic Geometry, Ninth Ed. (ISE Reprint), Addison- Wesley, Reading Mass, 1998. - (6) D. V. Widder, Advanced Calculus, Second Ed., Dover Pub., New York. 1989 - (7) R COURANT AND F. JOHN., Introduction to Calculus and Analysis, Vol I. Reprint of 1st Ed. Springer-Verlag, New York, 1999. - (8) SUDHIR R. GHORPADE AND BALMOHAN LIMAYE, A course in Multivariable Calculus and Analysis, Springer International Edition. Raininatain Ruia Autonomona Raininatain Ruia #### Course Code: RUSMAT502/RUAMAT502 Course Title: Algebra II Academic Year: 2024-25 | CO | CO Description | | |-----|--|-----| | CO1 | to apply concepts of multiple integrals in the field of physics. | | | CO2 | to apply concepts of line integrals in the field of physics. | 3 | | CO3 | to apply concepts of surface integrals in the field of physics. | > \ | #### Unit 1: Group Theory - i. Groups, definition and properties, examples such as $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, GL_n(\mathbb{R}), SL_n(\mathbb{R}), O_n$ (= the group of $n \times n$ real orthogonal matrices), B_n (= the group of $n \times n$ nonsingular upper triangular matrices), S_n , \mathbb{Z}_n , U(n) the group of prime, residue classes modulo n under multiplication, Quarternion group, Dihedral group as group of symmetries of regular n-gon, abelian group, finite and infinite groups. - ii. Subgroups, necessary and sufficient condition for a non-empty subset of a group to be a subgroup. Examples, cyclic subgroups, centre Z(G). - iii. Order of an element. Subgroup generated by a subset of the group. Cyclic group. Examples of cyclic groups such as \mathbb{Z} and the group μ_n of the n-th roots of unity. - iv. Cosets of a subgroup in a group, Lagrange's Theorem. - v. Homomorphisms, isomorphisms, automorphisms, kernel and image of a homomorphism. #### Unit 2: Normal Subgroups - i. Normal subgroup of a group, centre of a group, Alternating group A_n , cycles, Quotient group. - ii. First Isomorphism Theorem, Second Isomorphism Theorem, Third Isomorphism Theorem, Correspondence Theorem. - iii. Permutation groups, cycle decomposition, Cayley's Theorem for finite groups... - iv. External direct product of groups, order of an element in a direct product, criterion for external product of finite cyclic groups to be cyclic. - v. Classification of groups of order ≤ 7 #### Unit 3: Direct Product of Groups - i. Internal direct product of subgroups, H and K which are normal in G, such that $H \cap K = \{1\}$. If a group is internal direct product of two normal subgroups H and K and HK = G, it is isomorphic to the external direct product $H \times K$. - ii. Structure Theorem of finite abelian groups (statement only) and applications. - iii. Conjugacy classes in a group, class equation. A group of order p^2 is abelian. | Practica | als Based on Course: RUSMAT502/RUAMAT502. Course Code: RUSMATP501/RUA | |----------|--| | Sr. No. | Tutorials | | 1 | Examples and properties of groups | | 2 | Group of symmetry of equilateral triangle, rectangle, square. | | 3 | Subgroups | | 4 | Cyclic groups, cyclic subgroups, finding generators of every subgroup group. | | 5 | Left and right cosets of a subgroup, Lagrange's Theorem. | | 6 | Group homomorphisms, isomorphisms. | | 7 | Miscellaneous Theory Questions | #### Reference Books - (1) I. N. Herstein, Topics in Algebra, Wiley Eastern Limited, Second edition. - (2) Michael Artin, Algebra, Prentice Hall of India, New Delhi. - (3) P.B. Bhattacharya, S. K. Jain and S. R. Nagpaul, Basic Abstract Algebra, Second edition, Foundation Books, New Delhi, 1995. (4) D. Dummit, R. Foote, Abstract Algebra, John Wiley and Sons, Inc. #### Additional Reference Books: - (1) N. S. Gopalakrishnan, University Algebra, Wiley Eastern Limited. #### Course Code:RUSMAT503/RUAMAT503 Course Title: Topology of Metric Spaces Academic Year: 2024-25 | CO | CO Description | |-----|--| | CO1 | to construct examples of metrics. | | CO2 | to compare properties of open, closed intervals, sequences and completeness on R | | 002 | with an arbitrary metric space. | | CO3 | to compare properties of continuity on R with an arbitrary metric space. | #### Unit I: Metric Spaces (15 Lectures) Definition, examples of metric spaces \mathbb{R} , \mathbb{R}^2 Euclidean space \mathbb{R}^n sup and sum metric, \mathbb{C} (complex numbers), normed spaces. distance metric induced by the norm, translation invariance of the metric induced by the norm. Metric subspaces. Product of two metric spaces. Open balls and open sets in a metric space, examples of open sets in various metric spaces, Hausdorff property, interior of a set. Structure of an open set in \mathbb{R} , equivalent metrics. Distance of a point from a set, distance between sets, diameter of a set in a metric space and bounded sets. #### Unit II: Closed sets, Sequences, Completeness (15 Lectures) Closed ball in a metric space, Closed sets-definition, examples. Limit point of a set, Isolated point, A closed set contains all its limit points, Closure of a set and boundary, Sequences in a metric space, Convergent sequence in a metric space, Cauchy sequence in a metric space, subsequences, examples of convergent and Cauchy sequence in finite metric spaces, \mathbb{R} with different metrics and other metric spaces. Characterization of limit points and closure points in terms of sequences. Definition and examples of relative openness/closeness in subspaces, Dense subsets in a metric space and Separability. Definition of complete metric spaces, Examples of complete metric spaces. Completeness property in subspaces. Nested Interval theorem in \mathbb{R} . Cantor's Intersection Theorem. #### Unit III: Continuity (15 Lectures) Epsilon-delta definition of continuity at a point of a function from one metric space to another. Equivalent characterizations of continuity at a point in terms of sequences, open sets and closed sets and examples. Algebra of continuous real valued functions on a metric space. Continuity of the composite of continuous functions. | Practic | als Based on Course : RUSMAT503/RUAMAT503. Course Code: RUSMATP502/RUA | |---------|--| | Sr. No. | Tutorials | | 1 | Examples of Metric Spaces. | | 2 | Open balls and Open sets in Metric / Normed Linear spaces, Interior F | | 3 | Subspaces, Closed Sets and Closure, Equivalent Metrics and Norms. | | 4 | Sequences, Convergent and Cauchy Sequences in a Metric Space, Comp | | 4 | Spaces, Cantors Intersection Theorem and its Applications. | | 5 | Continuous Functions on Metric Spaces | | 6 | Characterization of continuity at a point in terms of metric spaces. | | 7 | Miscellaneous Theory Questions. | | | A | #### Reference Books: - (1) S. Kumaresan, Topology of Metric spaces, Narosa, Second Edn. - (2) E. T. COPSON., Metric Spaces. Universal Book Stall, New Delhi, 1996. - (1) W. Rudin, Principles of Mathematical Analysis, Third Ed, McGraw-Hill, Auckland, 1976. - (2) T. APOSTOL, Mathematical Analysis, Second edition, Narosa, New Delhi, 1974 - (3) P. K. Jain. K. Ahmed, Metric Spaces. Narosa, New Delhi, 1996. - (4) R. R. GOLDBERG, Methods of Real Analysis, Oxford and IBH Pub. Co., New Delhi 1970. - (5) D. SOMASUNDARAM, B. CHOUDHARY, A first Course in Mathematical Analysis. Narosa, New Delhi - (6) G.F. Simmons, Introduction to Topology and Modern Analysis, McGraw-Hii, New York, 1963. - (7) SUTHERLAND, Introduction to Metric and Topological Spaces, Oxford University Press, 2009 #### Course Code: RUSMATE504I/RUAMATE504I Course Title: Graph Theory Academic Year: 2024-25 | С | O | CO Description | |---|----|---| | C | O1 | to understand various aspects of factorization | | C | O2 | to understand importance of cryptography in todays world. | #### Unit I: Basics of Graphs (15 Lectures) Definition of general graph, Directed and undirected graph, Simple and multiple graph, Types of graphs- Complete graph, Null graph, Complementary graphs, Regular graphs Sub graph of a graph, Vertex and Edge induced sub graphs, Spanning sub graphs. Basic terminology- degree of a vertex, Minimum and maximum degree, Walk, Trail, Circuit, Path, Cycle. Handshaking theorem and its applications, Isomorphism between the graphs and consequences of isomorphism between the graphs, Self complementary graphs, Connected graphs, Connected components. Matrices associated with the graphs – Adjacency and Incidence matrix of a graph- properties, Bipartite graphs and characterization in terms of cycle lengths. Degree sequence and Havel-Hakimi theorem. #### Unit II: Trees (15 Lectures) Cut edges and cut vertices and relevant results, Characterization of cut edge, Definition of a tree and its characterizations, Spanning tree, Recurrence relation of spanning trees and Cayley formula for spanning trees, Prefix codes and Huffman coding, Weighted graphs. #### Unit III: Eulerian and Hamiltonian graphs (15 Lectures) Eulerian graph and its characterization, Hamiltonian graph, Necessary condition for Hamiltonian graphs using G - S where S is a proper subset of V(G), Sufficient condition for Hamiltonian graphs-Ore's theorem and Dirac's theorem, Hamiltonian closure of a graph, Cube graphs and properties like regular, bipartite, Connected and Hamiltonian nature of cube graph, Line graph of a graph and simple results. | Practica | als Based on Course RUSMATE504I/RUAMATE504I. Course Code: RUSMATP502/RUAMATE504I. | |----------|---| | Sr. No. | Tutorials | | 1 |
Handshaking Lemma and Isomorphism. | | 2 | Degree Sequence | | 3 | Trees, Cayley Formula. | | 4 | Applications of Trees. | | 5 | Eulerian Graphs. | | 6 | Hamiltonian Graphs. | | 7 | Miscellaneous Problems. | #### Reference Books: - (1) BONDY AND MURTY, Graph Theory with Applications - (2) Balkrishnan and Ranganathan, Graph theory and applications. - (3) West D. B., Introduction to Graph Theory, Pearson Modern Classics for Advanced Mathematics Series, 2^{nd} Edn. - (4) Sharad Sane, Combinatorial Techniques, Hindustan Book Agency. - (1) BEHZAD AND CHARTRAND, Graph theory - (2) CHOUDAM S. A., Introductory Graph theory. # Course Code: RUSMATE504II/RUAMATE504II Course Title: Number Theory and its Applications Academic Year: 2024-25 | CO | CO Description | | |-----|---|---| | CO1 | to understand various aspects of factorization | | | CO2 | to understand importance of cryptography in todays world. | 7 | #### Unit 1: Congruences and Factorization Congruences: Definition and elementary properties, Complete residue system modulo m, Reduced residue system modulo m, Euler's function and its properties, Fermat's Little Theorem, Euler's generation of Fermat's Little Theorem, Wilson's Theorem, Linear congruence, The Chinese Remainder Theorem, Congruence of higher degree, The Fermat Kraitchik Factorization Method. #### Unit 2: Diophantine Equations and their Solutions The linear equations ax + by = c. The equations $x^2 + y^2 = p$ where p is a prime. The equation $x^2 + y^2 = z^2$, Pythagorean triples, primitive solutions, The equations $x^4 + y^4 = z^2$ and $x^4 + y^4 = z^4$ have no solutions (x, y, z) with $xyz \neq 0$. Every positive integer n can be expressed as sum of squares of four integers, Universal quadratic forms $x^2 + y^2 + z^2 + t^2$. Assorted examples –section 5.4 of Number theory by Niven-Zuckermann-Montgomery. #### Unit 3: Primitive Roots and Cryptography Order of an integer and Primitive Roots. Basic notions such as encryption (enciphering) and decryption (deciphering), Cryptosystems, symmetric key cryptography, Simple examples such as shift cipher, Affine cipher, Hill's cipher, Vigenere cipher. Concept of Public Key Cryptosystem; RSA Algorithm. An application of Primitive Roots to Cryptography. | Practicals Based on Course RUSMATE504II/RUAMATE504II. Course Code: RUSMATP602 | | | | | | |---|--|--|--|--|--| | Sr. No. | Tutorials | | | | | | 1 | Congruences. | | | | | | 2 | Linear congruences and congruences of higher degree. | | | | | | 3 | Linear diophantine equations. | | | | | | 4 | Pythagorean triples and sum of squares. | | | | | | 5 | Cryptosystems (Private Key). | | | | | | 6 | Cryptosystems (Public Key) and primitive roots. | | | | | | 7 | Miscellaneous theoretical questions. | | | | | #### Reference Books: - (1) David M. Burton, An Introduction to the Theory of Numbers. Tata McGraw Hill Edition. - (2) Niven, H. Zuckerman and H. Montogomery, An Introduction to the Theory of Numbers, John Wiley and Sons. Inc. - (3) M. Artin, Algebra. Prentice Hall. - (4) K. Ireland, M. Rosen. A classical introduction to Modern Number Theory. Second edition, Springer Verlag. #### Modalities of Assessment #### Theory Examination Pattern #### (A) Internal Assessment - 40% 40 Marks | Sr. No. | Evaluation Type | Marks | | |---------|-----------------------------------|-------|---| | 1 | Test | 20 | | | 2 | Assignment/Viva/Test/Presentation | 20 | (| | | Total: 40 Marks | | | #### (B) External Examination- 60% 60 Marks - Duration: These examinations shall be of two hours duration. Theory Question Pattern | | | Paper Pattern | | | | |----------------|--------------|--|-------|--------------------|--| | Question | Sub-question | Option | Marks | Questions Based or | | | Question 1 | a | Attempt any one of the given two questions. | 20 | Unit-I | | | Question 1 | b | Attempt any two of the given four questions. | | | | | Question 2 | a | Attempt any one of the given two questions. | 20 | Unit-II | | | Q ••••• | b | Attempt any two of the given four questions. | | V | | | Question 3 | a | Attempt any one of the given two questions. | 20 | Unit-III | | | · | b | Attempt any two of the given four questions. | | | | | | | | | | | | 2:0 | S | | | | | #### **Practical Examination Pattern** #### (A) Internal Assessment - 40% 20 Marks | Sr. No. | Evaluation Type | Marks | | | | | |---------|---------------------------------|-------|--|--|--|--| | 1 | Journal | 5 | | | | | | 2 | Viva/ Multiple Choice Questions | 15 | | | | | | | Total: 20 Marks | | | | | | #### (B) External Examination- 60% 60 Marks - 1. Duration: These examinations shall be of **two hours duration**. - 2. Theory Question Pattern External Examination- 60% 30 Marks | Paper Pattern | | |---|----------| | There shall be three compulsory questions of 10 marks each with internal choice | 30 Msrks | | Total Marks: 30 | | ## Overall Examination and Marks Distribution Pattern Semester-V | Course | RUSMAT501/RUAMAT501 | | | RUSMAT501/RUAMAT501 RUSMAT502/RUAMAT502 | | RUSMAT503/RUAMAT503 | | RUSMATE504I/RUAMATE504I | | | Grand | | | |------------|---------------------|----------|-------|---|----------|---------------------|----------|-------------------------|-------|----------|----------|-------|-----| | | | | | | Y | | | | | | | | То- | | | | | | | | | | | | | | | tal | | | Internal | External | Total | | | Theory | 40 | 60 | 100 | 40 | 60 | 100 | 40 | 60 | 100 | 40 | 60 | 100 | 400 | | Practicals | 20 | 30 | 50 | 20 | 30 | 50 | 20 | 30 | 50 | 20 | 30 | 50 | 200 | | | , | 0 | 0, | | | | | | | | | | | | Q_{2} | O Dilli | #### Course Code: RUSMAT601/RUAMAT601 Course Title: Basic Complex Analysis Academic Year: 2024-25 | CO | CO Description | |-----|--| | CO1 | to elaborate on properties of complex numbers. | | CO2 | to elaborate on properties of Mobius transforms and singularities in subsets of C. | # Unit I: Complex Numbers and Functions of Complex variables (15 Lectures) Review of complex numbers: Complex plane, polar coordinates, exponential map, powers and roots of complex numbers, De Moivr's formula, \mathbb{C} as a metric space, bounded and unbounded sets, point at infinity-extended complex plane, sketching of set in complex plane. Limit at a point, theorems on limits, convergence of sequences of complex numbers and results using properties of real sequences. Functions $f: \mathbb{C} \to \mathbb{C}$ real and imaginary part of functions, continuity at a point and algebra of continuous functions. #### Unit II: Holomorphic functions (15 Lectures) Derivative of $f: \mathbb{C} \to \mathbb{C}$; comparison between differentiability in real and complex sense, Cauchy-Riemann equations, sufficient conditions for differentiability, analytic function, ', f, g analytic then f+g, f-g, fg, f/g are analytic chain rule. Theorem: If f'=0 everywhere in a domain G then f must be constant throughout, Harmonic functions and harmonic conjugate. Explain how to evaluate the line integral $\int f(z)dz$ over $|z-z_0|=r$ and prove the Cauchy integral formula: If f is analytic in $B(z_0,r)$ then for any w in $B(z_0,r)$ we have $f(w)=\int \frac{f(z)}{w-z}dz$ over $|z-z_0|=r$. #### Unit III: Complex power series (15 Lectures) Taylor's theorem for analytic functions, Mobius transformations—definition and examples. Exponential function, its properties, trigonometric function, hyperbolic functions, Power series of complex numbers and related results, radius of convergences, disc of convergence, uniqueness of series representation, examples. Definition of Laurent series, Definition of isolated singularity, statement (without proof) of existence of Laurent series expansion in neighbourhood of an isolated singularity, type of isolated singularities viz. removable, pole and essential defined using Laurent series expansion, statement of residue theorem and calculation of residue. | Practic | Practicals Based on Course RUSMAT601/RUAMAT601. Course Code:RUSMATP601/RUAMAT601. | | | | | | |---------|---|--|--|--|--|--| | Sr. No. | Practicals | | | | | | | 1 | Complex Numbers, subsets of $\mathbb C$ and their properties. | | | | | | | 2 | Limits and continuity of complex-valued functions. | | | | | | | 3 | Derivatives of functions of complex variables, analytic functions. | | | | | | | 4 | Analytic function, finding harmonic conjugate, Mobius transformations. | | | | | | | 5 | Cauchy integral formula, Taylor series, power series. | | | | | | | 6 | Finding isolated singularities- removable, pole and essential, Laurent series | | | | | | | U | lation of residue. | | | | | | | 7 | Miscellaneous theory questions. | | | | | | #### Reference Books: #### **Reference Books:** - (1) J. W. Brown and R.V. Churchill, Complex analysis and Applications. - (2) S. Ponnusamy, Foundations Of Complex Analysis, Second Ed., Narosa, New Delhi. 1947 - (3) R. E. GREENE AND S. C. KRANTZ, Function theory of one complex variable - (4) T. W. GAMELIN, Complex analysis #### Course Code: RUSMAT602/RUAMAT602 Course Title: Algebra III Academic Year: 2024-25 | CO | CO Description | |-----|--| | CO1 | to extend concept of normal subgroup to ideal of the ring R. | | CO2 | to elaborate properties of ED, PID and UFD. | | CO3 | to find quadratic extensions of field F. | #### Unit 1: Ring Theory - i. Ring (definition should include the existence of a unity element), zero divisor, unit, the multiplicative group of units of
a ring. Basic properties and examples of rings. - ii. Commutative ring, integral domain, division ring, subring, examples, Characteristic of a ring, characteristic of an Integral Domain. - iii. Ring homomorphism, kernel of ring homomorphism, ideals, operations on ideals and quotient rings, examples. - iv. Factor theorem and First and Second isomorphism theorems for rings, Correspondence theorem for rings. #### Unit 2: Factorization - i. Principal ideal, maximal ideal, prime ideal, characterization of prime and maximal ideals in terms of quotient rings. - ii. Polynomial rings, R[X] when R is an integral domain/ field, Eisenstein's criterion for irreducibility of a polynomial over \mathbb{Z} , Gauss lemma, prime and maximal ideals in polynomial rings. - iii Notions of euclidean domain (ED), principal ideal domain (PID) and unique factorization domain (UFD). Relation between these three notions (ED \Rightarrow PID \Rightarrow UFD). - iv Example of ring of Gaussian integers. #### Unit 3: Field Theory i. Review of field, characteristic of a field, Characteristic of a finite field is prime. - ii. Prime subfield of a field, Prime subfield of any field is either \mathbb{Q} or \mathbb{Z}_p (upto isomorphism). - iii. Field extension, Degree of field extension. Algebraic elements, Any homomorphism of a field is injective. - iv. Any irreducible polynomial p(x) over a field F has a root in an extension of the field, moreover the degree of this extension $\frac{F(x)}{(p(x))}$ over the field F is the degree of the polynomial p(x). - v. The extension $\frac{\mathbb{Q}[x]}{(x^2-2)}$ i.e. $\mathbb{Q}(\sqrt{2})$, $\frac{\mathbb{Q}[x]}{(x^3-2)}$ i.e. $\mathbb{Q}(\sqrt[3]{2})$, $\frac{\mathbb{Q}[x]}{(x^2+1)}$ i.e. $\mathbb{Q}(i)$, Quadratic extensions of a field F when characteristic of F is not 2. | Practic | Practicals Based on Course RUSMAT602/RUAMAT602. Course Code: RUSMATP601 | | | |---------|---|--|--| | Sr. No. | Practicals | | | | 1 | Rings, Subrings | | | | 2 | Ideals, Ring Homomorphism and Isomorphism | | | | 3 | Polynomial Rings | | | | 4 | Prime and Maximal Ideals | | | | 5 | Fields, Subfields | | | | 6 | Field Extensions | | | | 7 | Miscellaneous Theory Questions | | | #### Reference Books: - (1) I. N. Herstein, Topics in Algebra, Wiley Eastern Limited, Second edition. - (2) Michael Artin, Algebra, Prentice Hall of India, New Delhi. - (3) P.B. Bhattacharva, S. K. Jain and S. R. Nagpaul, Basic Abstract Algebra, Second edition, Foundation Books, New Delhi, 1995. - (4) D. Dummit, R. Foote, Abstract Algebra, John Wiley and Sons, Inc. - (1) N. S. Gopalakrishnan, University Algebra, Wiley Eastern Limited. - (2) J. Gallian, Contemporary Abstract Algebra, Narosa, New Delhi. - (3) J. B. Fraleigh, A First Course in Abstract Algebra, Third edition, Narosa, New Delhi. - (4) T. W. Hungerford, Algebra, Springer. Pattinarain Ruia Antonomous College Rattinarain Ruia #### Course Code: RUSMAT603/RUAMAT603 Course Title: Metric Topology Academic Year: 2024-25 | CO | CO Description | |-----|---| | CO1 | to compare properties of compact and connected sets on R with an arbitrary metric spaces. | | CO2 | to elaborate on properties of sequences and series of functions. | #### Unit I: Compact Sets (15 Lectures) Definition of compact metric space using open cover, examples of compact sets in different metric spaces \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^3 and other metric spaces. Properties of compact sets:compact set is closed and bounded, every infinite bounded subset of a compact metric space has a limit point, Heine Borel theorem-every subset of Euclidean metric space \mathbb{R} is compact if and only if it is closed and bounded. Equivalent statements for compact sets in \mathbb{R} ; Heine-Borel property, Closed and boundedness property, Bolzano-Weierstrass property, Sequentially compactness property. Finite intersection property of closed sets for compact metric space, hence every compact metric space is complete. ### Unit II: Connected sets (15 Lectures) Separated sets- definition and examples, disconnected sets, disconnected and connected metric spaces, Connected subsets of a metric space. Connected subsets of \mathbb{R} , A subset of \mathbb{R} is connected if and only if it is an interval. A continuous image of a connected set is connected, Characterization of a connected space, viz. a metric space is connected if and only if every continuous function from b to <1,-1> is a constant function. Path connectedness in \mathbb{R} , definition and examples, A path connected subset of \mathbb{R} is connected, convex sets are path connected, Connected components, An example of a connected subset of \mathbb{R} which is not path connected. #### Unit III: Sequence and series of functions (15 Lectures) Sequence of functions - pointwise and uniform convergence of sequences of real-valued functions, examples. Uniform convergence implies pointwise convergence, example to show converse not true, series of functions, convergence of series of functions, Weierstrass M-test. Examples. Properties of uniform convergence: Continuity of the uniform limit of a sequence of continuous function, conditions under which integral and the derivative of sequence of functions converge to the integral and derivative of uniform limit on a closed and bounded interval. Examples. Consequences of these properties for series of functions, term by term differentiation and integration. Power series in $\mathbb R$ centered at origin and at some point 4F in $\mathbb R$, radius of convergence, region (interval) of convergence, uniform convergence, term by-term differentiation and integration of power series, Examples. Uniqueness of series representation, functions represented by power series, classical functions defined by power series such as exponential, cosine and sine functions, the basic properties of these functions. | Practica | als Based on Course RUSMAT603/RUAMAT603. Course Code: RUSMATP602/RUAM | |----------|---| | Sr. No. | Practicals | | 1 | Examples of compact metric spaces | | 2 | Equivalent conditions for a subset of a metric space to be compact | | 3 | Connectedness | | 4 | Path Connectedness | | 5 | Pointwise and uniform convergence of sequence of functions. | | 6 | Pointwise and uniform convergence of series of functions and power series | | 7 | Miscellaneous Theory Questions. | #### Reference Books: - (1) S. Kumaresan, Topology of Metric spaces. Narosa, Second Edn. - (2) E. T. COPSON., Metric Spaces. Universal Book Stall, New Delhi, 1996. - (3) R. R. GOLDBERG, Methods of Real Analysis, Oxford and IBH Pub. Co., New Delhi 1970. - (1) W. Rudin, Principles of Mathematical Analysis, Third Ed, McGraw-Hill, Auckland, 1976. - (2) T. Apostol, Mathematical Analysis, Second edition, Narosa, New Delhi, 1974 - (3) E. T. COPSON., Metric Spaces. Universal Book Stall, New Delhi, 1996. - (4) P. K. Jain. K. Ahmed, Metric Spaces. Narosa, New Delhi, 1996. - (5) D. Somasundaram, B. Choudhary, A first Course in Mathematical Analysis. Narosa, New Delhi - (6) G.F. Simmons, Introduction to Topology and Modern Analysis, McGraw-Hii, New York, 1963. Rannarain Ruisa Authonomo #### Course Code: RUSMATE604I/RUAMATE604I Course Title: Graph Theory and Combinatorics Academic Year: 2024-25 | CO | CO Description | | |-----|--|--| | CO1 | to apply the concepts of colorings of graphs and planar graph in the fields of chem- | | | | istry, physics and biological sciences. | | | CO2 | to apply the concepts of combinatorics in the field of statistics. | | #### Unit I: Colorings of graphs (15 Lectures) Vertex coloring- evaluation of vertex chromatic number of some standard graphs, critical graph. Upper and lower bounds of Vertex chromatic Number- Statement of Brooks theorem. Edge coloring- Evaluation of edge chromatic number of standard graphs such as complete graph, complete bipartite graph, cycle. Statement of Vizing Theorem. Chromatic polynomial of graphs-Recurrence Relation and properties of Chromatic polynomials. Vertex and Edge cuts vertex and edge connectivity and the relation between vertex and edge connectivity. Equality of vertex and edge connectivity of cubic graphs. Whitney's theorem on 2-vertex connected graphs. #### Unit II: Planar graphs (15 Lectures) Definition of planar graph. Euler formula and its consequences. Non planarity of K_5 ; K(3;3). Dual of a graph. Polyhedron in \mathbb{R} and existence of exactly five regular polyhedra- (Platonic solids) Colorabilty of planar graphs- 5 color theorem for planar graphs, statement of 4 color theorem. #### Unit III: Combinatorics (15 Lectures) Applications of Inclusion Exclusion Principle-Rook polynomial, Forbidden position problems Introduction to partial fractions and using Newton's binomial theorem for real power series, expansion of some standard functions. Forming recurrence relation and getting a generating function. Solving a recurrence relation using ordinary generating functions. System of Distinct Representatives and Hall's theorem of SDR. | Practica | als Based on Course RUSMATE604II/RUAMATE604I. Course Code: RUSMATP602/R | |----------|---| | Sr. No. | Practicals | | 1 | Coloring of Graphs. | | 2 | Chromatic polynomial and connectivity | | 3 | Planar graphs. | | 4 | Inclusion Exclusion Principle and Recurrence relation. | | 5 | Rook polynomial. | | 6 | Generating Functions and System of Distinct Representatives. | | 7 | Miscellaneous Problems. | #### Reference Books: - (1) BONDY AND MURTY, Graph Theory with Applications - (2) Balkrishnan and Ranganathan, Graph theory and applications. - (3) WEST D B, Introduction to
Graph Theory, Pearson Modern Classics for Advanced Mathematics Series, 2^{nd} Edn - (4) RICHARD BRUALDI, Introduction to Combinatorics. - (5) SHARAD SANE, Combinatorial Techniques, Hindustan Book Agency. - (1) Behzad and Chartrand , Graph theory, Pearson Modern Classics for Advanced Mathematics Series, \mathfrak{L}^{nd} Edn. - (2) CHOUDAM S. A., Introductory Graph theory. - (3) COHEN, Combinatorics # Course Code: RUSMATE604II/RUAMATE604II Course Title: Number Theory and its Applications Academic Year: 2024-25 | CO | CO Description | | |-----|--|-----| | CO1 | to apply Gauss Lemma in different situations. | | | CO2 | to understand continuied fractions. | 5 | | CO3 | to understand and apply theory of arithmetic functions in simple situations. | 100 | #### Unit 1: Quadratic Reciprocity Quadratic Residues and Legendre Symbol, Euler's criterion, Gauss's Lemma, Quadratic Reciprocity Law. The Jacobi Symbol and law of reciprocity for Jacobi Symbol. Quadratic Congruences with Composite moduli. #### Unit 2: Continued Fractions Finite continued fractions. Infinite continued fractions and representation of an irrational number by an infinite simple continued fraction, Rational approximations to irrational numbers and order of convergence, Best possible approximations. Periodic continued fractions. #### Unit 3: Pell's Equation, Arithmetic Functions and Special Numbers Pell's equation $x^2 - dy^2 = n$, where d is not a square of an integer. Solutions of Pell's equation (The proofs of convergence theorems to be omitted). Arithmetic functions of number theory: d(n) (or T(n)), $\sigma(n)$, $\sigma(n)$, w(n) and their properties, $\mu(n)$ and the Mobius inversion formula. Special numbers: Fermat numbers, Mersenne numbers, Perfect numbers, Amicable numbers, Pseudo primes, Carmichael numbers. | Practic | als Based on Cours | e RUSMATE 604 II/RUAMATE 694 II. Course Code: RUSMATP 602 /I | |---------|--------------------|--| | Sr. No. | | Practicals | | 1 | | Legendre Symbol. | | 2 | | Jacobi Symbol and Quadratic congruences with composite moduli | | 3 | \ | Finite continued fractions. | | 4 | > | Infinite continued fractions. | | 5 | | Pell's equations and Arithmetic functions of number theory. | | 6 | | Special Numbers. | | 7 | | Miscellaneous theoretical questions. | #### Reference Books: - (1) David M. Burton, An Introduction to the Theory of Numbers. Tata McGraw Hill Edition. - (2) Niven, H. Zuckerman and H. Montogomery, An Introduction to the Theory of Numbers, John Wiley and Sons. Inc. - (3) M. Artin, Algebra. Prentice Hall. - (4) K. Ireland, M. Rosen. A classical introduction to Modern Number Theory. Second edition Raininarain Ruina Antonomonis Raininarain Ruina Antonomonis #### Modalities of Assessment #### Theory Examination Pattern #### (A) Internal Assessment - 40% 40 Marks | Sr. No. | Evaluation Type | Marks | (| |---------|-----------------------------------|-------|---| | 1 | Test | 20 | | | 2 | Assignment/Viva/Test/Presentation | 20) | (| | | Total: 40 Marks | | | #### (B) External Examination- 60% 60 Marks - Duration: These examinations shall be of two hours duration. Theory Question Pattern | | | Paper Pattern | | | |-------------|--------------|---|-------|--------------------| | Question | Sub-question | Option | Marks | Questions Based or | | Question 1 | a | Attempt any one of the given two questions. | 20 | Unit-I | | Question 1 | b | Attempt any two of the given four questions. | | | | Question 2 | a | Attempt any one of the given two questions. | 20 | Unit-II | | · | b | Attempt any two of the given four questions. | | | | Question 3 | a | Attempt any one of the given two questions. | 20 | Unit-III | | | b | Attempt any two of the given four questions. Total Marks: 60 | | | | | | | | | | Palilinait. | | | | | #### **Practical Examination Pattern** #### (A) Internal Assessment - 40% 20 Marks | Sr. No. | o. Evaluation Type | | |---------|---------------------------------|----| | 1 | Journal | 5 | | 2 | Viva/ Multiple Choice Questions | 15 | | | Total: 20 Marks | | #### (B) External Examination- 60% 60 Marks - 1. Duration: These examinations shall be of **two hours duration**. - 2. Theory Question Pattern External Examination- 60% 30 Marks | Executar Examination 0070 90 Ways | |--| | Paper Pattern | | There shall be three compulsory questions of 10 marks each with internal choice 30 Msrks | | Total Marks: 30 | ### Overall Examination and Marks Distribution Pattern Semester-VI | Course | RUSMA | AT601/RU | JAMAT601 | RUSMAT602/RUAMAT602 | | | RUSMAT603/RUAMAT603 | | | RUSMATE604I/RUAMATE604I | | | Grand | |------------|----------|----------|---------------|---------------------|----------|-------|---------------------|----------|-------|-------------------------|----------|-------|-------| | | | | | > | | | | | | | | | То- | | | | | | | | | | | | | | | tal | | | Internal | External | Total | | | Theory | 40 | 60 | 100 | 40 | 60 | 100 | 40 | 60 | 100 | 40 | 60 | 100 | 400 | | Practicals | 20 | 30 | 50 | 20 | 30 | 50 | 20 | 30 | 50 | 20 | 30 | 50 | 200 | | | | | 10 | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | | | \mathcal{O} | | | | | | | | | | | | | | _ 1) | / | | | | | | | | | | | | | | Y | | | | | | | | | | | | | | | \' | | | | | | | | | | | | | | 0) | / | U | , |