Resolution Number: AC/I(21-22).2(II).RUS5

S. P. Mandali's Ramnarain Ruia Autonomous College (Affiliated to University of Mumbai)

Program: B.Sc (Chemistry)

Program Code: RUSCHE

(Credit Based Semester and Grading System for academic year 2022–2023)

PROGRAM OUTCOMES

S. P. Mandali's Ramnarain Ruia Autonomous College has adopted the Outcome Based Education model to make its science graduates globally competent and capable of advancing in their careers. The Bachelors Program in Science also encourages students to reflect on the broader purpose of their education.

PO	Description				
A stud	A student completing Bachelor's Degree in Science program will be able to:				
PO 1	Recall and explain acquired scientific knowledge in a comprehensive manner and apply the skills acquired in their chosen discipline. Interpret scientific ideas and relate its interconnectedness to various fields in science.				
PO 2	Evaluate scientific ideas critically, analyse problems, explore options for practical demonstrations, illustrate work plans and execute them, organise data and draw inferences.				
PO 3	Explore and evaluate digital information and use it for knowledge upgradation. Apply relevant information so gathered for analysis and communication using appropriate digital tools.				
PO 4	Ask relevant questions, understand scientific relevance, hypothesize a scientific problem, construct and execute a project plan and analyse results.				
PO 5	Take complex challenges, work responsibly and independently, as well as in cohesion with a team for completion of a task. Communicate effectively, convincingly and in an articulate manner.				
PO 6	Apply scientific information with sensitivity to values of different cultural groups. Disseminate scientific knowledge effectively for upliftment of the society.				
PO 7	Follow ethical practices at work place and be unbiased and critical in interpretation of scientific data. Understand the environmental issues and explore sustainable solutions for it.				
PO 8	Keep abreast with current scientific developments in the specific discipline and adapt to technological advancements for better application of scientific knowledge as a lifelong learner.				

PROGRAM SPECIFIC OUTCOMES

PSO	Description					
A studer	A student completing Bachelor's Degree in Science program in the subject of Chemistry					
will be a	ble to:					
PSO 1	Acquire the fundamental knowledge of the main branches of chemistry viz. Physical,					
1301	Inorganic, Organic and Analytical.					
PSO 2	Identify and separate components of organic or inorganic origin and will also be able					
1502	to analyse them by making use of the modern instrumental methods learned.					
PSO 3	Communicate the results of the scientific work in oral as well as written format to					
1503	both the scientists and the public at large.					
	Establish themselves as effective professionals and function as a member of an					
	interdisciplinary problem solving team by demonstrating the critical thinking, problem					
PSO 4	solving & analytical reasoning skills while developing solutions or strategies for					
	solving the real problems through the use of the chemistry knowledge gain during the					
	course.					
	Appreciate the central role of chemistry in our society and use this as a basis for ethical					
PSO 5	behaviour in issues facing chemists including an understanding of safe handling of					
PSU 5	chemicals, environmental issues and key issues facing our society in terms of energy,					
	health and medicine.					
PSO 6	Develop skills that will prepare them not only for immediate employment but also for					
r50 0	life-long learning in advanced areas of Chemistry and related fields.					

PROGRAM OUTLINE

Year	Semester	Course Code	Course Ti	itle / Unit Title	Credits
F.Y.B.Sc	I	RUSCHE101	Chemistr	y-I	
			Unit-I	Chemical Calculations	
			Unit-II	Atomic Structure, Periodic	$\cdot \cdot \cdot \circ$
				Table and Periodicity of	2
				Properties and Chemistry of s-	2
				block elements	
			Unit-III	Fundamentals of Organic	
				Chemistry	
		RUSCHE102	Chemistr	y-II	2
			Unit-I	Gaseous and Liquid State	
			Unit-II	Oxidation Reduction	
				Chemistry and Environmental	
				impact of oxides of carbon,	
				sulphur and nitrogen.	
			Unit-III	Stereochemistry	
		RUSCHEP101	Practical		2
	II	RUSCHE201	Chemistr	y-I	
			Unit-I	Chemical Thermodynamics- I	
		,	Unit-II	Concepts of Qualitative	
				Analysis and Acid-Base	2
				Theories	
		. 0	Unit-III	Chemistry of Aliphatic	
				Hydrocarbons	
		RUSCHE202	Chemistr	y-II	
			Unit-I	Chemical Kinetics-I and	
				Photochemistry	2
			Unit-II	Chemical Bond and Reactivity	
	~ 1		Unit-III	Chemistry of Aromatic	
				Hydrocarbons	
	10	RUSCHEP102	Practical		2
S.Y.B.Sc	Ш	RUSCHE301	Chemistr	y-I	
			Unit-I	Chemical Thermodynamics-II	
			Unit-II	Electrochemistry-I:	2
	•			Electrolytic Conductance And	
				Transport Number	
			Unit-III	Chemical Bonding	

		RUSCHE302	Chemistr	y-II	
			Unit-I	Reactivity and reactions of	
				halogenated hydrocarbons,	
				Organomagnesium and	
				organolithium compounds,	
				Alcohols, phenols and	
				epoxides.	2
			Unit-II	Chemistry of Carbonyl	
				Compounds	
			Unit-III	Chemistry of p-block	
			(elements:	
				(Group 13 and 14)	
		RUSCHE303	Chemistr	y-III	
			Unit-I	Introduction to Analytical	
		\		Chemistry	
			Unit-II	Classical methods of analysis	2
		(A) (O)-		Gravimetric Analysis	2
				Titrimetric Analysis	
		0	Unit-III	Environmental Chemistry:	
				Chemistry of Water	
		RUSCHEP301	Practical		2
	IV	RUSCHE401	Chemistr		
		•	Unit-I	Electrochemistry-II:	
	4.0-			Electromotive Force of	
				Galvanic Cells.	
	0,			pH and Buffers	
			Unit-II	Solutions of Liquid In Liquid	2
	*			Phase Equilibria	
			Unit-III	Comparative Chemistry of the	
				transition metal.	
U				Coordination Chemistry.	
				Nature of the Metal-Ligand	
		DUGGIE 403	CI	Bond.	
		RUSCHE402	Chemistr		
			Unit-I	Carboxylic acids and their	,
			TI*4 TT	derivatives, Sulphonic acids.	2
			Unit-II	Amines, Diazonium Salts,	
				Heterocyclic Compounds	

			TT *4 TTT	Cl : 4 CC 15 116	
			Unit-III	Chemistry of Group 15 and 16	
				elements	
				Organometallic Chemistry	
		RUSCHE403	Chemistr		
			Unit-I	Separation Techniques	
				Solvent Extraction	
				Chromatography (PC, TLC,	
				HPTLC)	2
			Unit-II	UV- Visible Absorption	2
				spectroscopy	
				Photometric titrations	
			X \	Conductometric titrations	
			Unit-III	Industrial Chemistry	
		RUSCHEP401	Practical		2
T.Y.B.Sc	V	RUSCHE501	Chemistr	y-I	
			Unit-I	Molecular spectroscopy	
			Unit-II	Electrochemistry-III	
		1/10		Classification of galvanic cells	2.5
			Unit-III	Colligative properties	2.5
				Chemical kinetics-II	
			Unit-IV	Surface chemistry & catalysis	
		,		Colloids	
		RUSCHE502	Chemistr	v-II	
			Unit-I	Chemical bonding:	
	10			Molecular symmetry	
				Molecular orbital theory for	
	0-,			polyatomic species	
				Metallic bonding.	
			Unit-II	Solid state chemistry	2.5
(1)			Unit-III	Chemistry of elements:	
				lanthanides & actinides	
U			Unit-IV	Chemistry of non aqueous	
				solvents, inter-halogen	
				compounds and xenon	
		RUSCHE503	Chemistr	•	
			Unit-I	Mechanism of organic	
			Omt-1	reactions	2.5
			Unit-II	Stereochemistry	4.3
			Unit-III	IUPAC nomenclature	

		T			
				Polymers	
			Unit-IV	Synthesis of organic	
				compounds	
		RUSCHE504	Chemistr	y-IV	
			Unit-I	Sampling	
				Treatment of analytical data	
			Unit-II	Titrimetric analysis:	
				Redox titrations	
				Precipitation titrations	
				Complexometric titrations	
			V \	Non-aqueous titrations	
			Unit-III	Atomic absorption	
				spectroscopy.	
				Atomic emission methods	2.5
		\		Fluorescence and	
		. 0	•	phosphorescence	
		(A) (D)		spectroscopy.	
				Nephelometry and	
		$O \cap V$		turbidimetry.	
			TI	turbiannetry.	
			Unit-IV	Thermal methods	
				Radioanalytical techniques	
				Mass spectrometry	
				Method validation	
	10	RUSCHEP501	Practical	(RUSCHEP501 +	
			RUSCHE	·	3
	0	RUSCHEP502	Practical	(RUSCHEP503 +	
			RUSCHE	,	3
AII	VI	RUSCHE601	Chemistr	· · · · · · · · · · · · · · · · · · ·	
			Unit-I	NMR spectroscopy	
				Polymers	
			Unit-II	Electrochemistry-IV:	
7				Decomposition potential,	2.5
				overvoltage and electroplating	
				Crystalline State	
			Unit-III	Nuclear chemistry-III	
			Unit-IV	Basics of quantum chemistry	
		RUSCHE602	Chemistr		
		10001112002	Unit-I	Coordination chemistry	2.5
			Omt-i	Coordination chemistry	

			TT */ TT	D .: C 1: .:	
			Unit-II	Properties of coordination	
			_	compounds	
			Unit-III	Organometallic chemistry	
			Unit-IV	Nanomaterials	
				Bioinorganic chemistry	
		RUSCHE603	Chemistr	y-III	
			Unit-I	Chemistry of carbohydrates	
				Catalysts & reagents	
			Unit-II	Chemistry of amino acids,	
			.X \	proteins and nucleic acids	2.5
			.10	Photochemistry	
			Unit-III	Spectroscopy –I	
			Unit-IV	Spectroscopy –II	
				Natural products	
		RUSCHE604	Chemistr	_	2.5
			Unit-I	Separation techniques	
		$\bigcirc \bigcirc \bigcirc$		(GC, HPLC, ion exchange	
				chromatography)	
			Unit-II	Electro-analytical techniques:	
	• (Ion selective electrodes	
				Polarography	
				Amperometric titrations	
	10		Unit-III	Miscellaneous Methods	
				Potentiometric Titrations	
-0				Bi-amperometric titrations	
				Gel electrophoresis	
<i>(1)</i>				Size exclusion	
				chromatography	
			Unit-IV	Applications to different	
			UIIIt-I V	fields:	
				Food analysis	
				Cosmetic analysis	
				Detergent analysis	
				Water analysis	
				_	
		DUCCHEDOA	Duactical	Pharmaceutical analysis	
		RUSCHEP601	Practical DUSCHE	(RUSCHEP601 +	3
		DUGGUERGA	RUSCHE	<u>'</u>	
		RUSCHEP602	Practical	(RUSCHEP603 +	3
			RUSCHE	P604)	

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR B.Sc CHEMISTRY 2022-2023

Resolution Number: AC/I(21-22).2(II).RUS5

S. P. Mandali's Ramnarain Ruia Autonomous College (Affiliated to University of Mumbai)

Syllabus for Semester I & II

Program: F.Y.B.Sc

Program Code: RUSCHE

(Credit Based Semester and Grading System for academic year 2022–2023)

SEMESTER I

Course Code: RUSCHE101

Unit	Content	No of
		Lectures
1	Chemical Calculations:	15
	1.1 Mole concept, relation with molar mass, conversion of amount into mole and vice	
	versa, relation with the number of particles present.	
	1.2 Amount and concentration, volume based units for concentration, molarity, normality,	
	formality, mass based unit for concentration - molality and mole fraction, ppm and ppb,	
	concept of millimoles and milliequivalents.	
	1.3 Problem solving based on various concentration units	
	1.4 Stoichiometry and calculations based on it, concept of limiting reactant and yield for a	
	chemical reaction.	
	1.5 Calculations based on stoichiometry.	
	1.6 Primary standards, properties of primary standards, primary standards for different	
	types of titrations, secondary standards, standardization, standard solutions.	
2	Atomic Structure and Periodic Table and Periodicity of Properties.	15
	2.1 Atomic Structure	
	2.1.1 Rutherford's Atomic Model; Bohr's Theory and its limitations, Somerfield	
	extension to Bohr's theory Zeeman effect; their relationship with quantum number; orbit	
	and orbital.	
	2.1.2 Quantum Numbers of last electron; Hund's rule, Aufbau principle; Pauli exclusion	
	Principle.	
	2.1.3 Wave function, Schrodinger wave equation (Mathematical expression not to be	
	discussed), Radial and Angular forms of the wave function; Relationship between Radial	
	function and probability; plots of probability for different orbitals; shapes of orbitals:	
	s,p,d,f. .	
	2.2 Periodic Table and Periodicity of Properties.	
	2.2.1 Long form of the Periodic Table; Classification of elements as main group,	
	transition, and inner transition elements;	

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR F.Y B.Sc Sem I & Sem II CHEMISTRY 2022-2023

	2.2.2 Periodicity in the following properties: Atomic and ionic size; electron gain	
	enthalpy; ionization enthalpy, effective nuclear charge (Slater rule); Electronegativity:	
	Pauling and Mulliken rules	
	(Numerical problems expected, wherever applicable).	
	2.3 Chemistry of s- block elements2.3.1. Chemical properties, Uses of alkali and alkaline earth metals, Diagonal relationship	
	of Li and Mg.	
	2.3.2 Role of Na and K in biological systems.	
3	Fundamentals of Organic Chemistry	15
	3.1 Nomenclature of Organic Compounds:	
	3.1.1 IUPAC nomenclature of mono functional aliphatic compounds.	
	3.1.2 IUPAC nomenclature of bi-functional aliphatic compounds and their cyclic	
	analogues.	
	3.2 Bonding and Structure of organic compounds:	
	Concept of Hybridization (sp3, sp2and sp hybridization)	
	Hybridization: sp3, sp2and sp hybridization of carbon and nitrogen; sp3 and sp2	
	hybridizations of oxygen in organic compounds and their geometry with suitable	
	examples.	
	3.3 Basic concepts involved in organic reaction mechanism:	
	3.3.1 Electronic Effects: Inductive, electromeric, resonance effects, hyperconjugation.	
	3.3.2 Carbocations, Carbanions and Free radicals:	
	Homolytic and heterolytic fission, examples of the same.	
	Formation of carbocations, carbanions and free radicals. (primary, secondary, tertiary,	
	allyl, benzyl), their relative stability.	
	3.3.4 Organic acids and bases; their relative strengths.	

Course Code: RUSCHE102

Unit	Content	No of
		Lectures
1	1. Gaseous Sate	15
	1.1.1 Postulates of kinetic theory of gases and Gas Laws.	
	1.1.2 Ideal and real gases, deviations from the gas laws, reasons for the deviations,	
	compressibility factor, Boyle temperature.	
	1.1.3 Volume correction and pressure correction, van der Waals equation of state, use of	
	the equation to explain the deviations from the gas laws.	
	1.1.4 Joule-Thomson effect, Joule-Thomson coefficient, inversion temperature, Linde's	
	process of liquefaction of gases.	
	1.1.5 Maxwell - Boltzmann's distribution of velocities, the graphical presentation and	
	its interpretation, average velocity, most probable velocity and R.M.S. velocity.	
	2. Liquid State	
	1.2.1 Introduction to liquid state, characteristics of liquid state, physical properties of	
	the liquids.	
	1.2.2 Determination of surface tension by drop number method using stalagmometer.	
	1.2.3 Surface active solutes and surface tension, applications of surface tension	
	measurement.	
	1.2.4 Viscosity: Introduction, coefficient of viscosity.	
	1.2.5 Determination of coefficient of viscosity by Ostwald viscometer.	
	1.2.6 Applications of viscosity measurement.	
2	Oxidation Reduction Chemistry and Environmental impact of oxides of carbon,	15
	sulphur and nitrogen.	
	2.1 Oxidation state, oxidation number, oxidation- reduction in terms of oxidation	
	number	
	2.2 Balancing redox equations by i) oxidation number method and ii) ion- electron	
	method.	
	2.3 Calculation of equivalent weight on the basis of chemical nature.	
	2.4 Study of oxides of carbon, sulphur and nitrogen with respect to their	

$RAMNARAIN\ RUIA\ AUTONOMOUS\ COLLEGE,\ SYLLABUS\ FOR\ F.Y\ B.Sc\ \ Sem\ II\ \ CHEMISTRY\ \ 2022-2023$

	(a) Sources	
	(b) Health Hazards	
	(c) Environmental Impact	
	(d) Control Techniques	
3	Stereochemistry	
	3.1.1 Optical Isomerism: optical activity, specific rotation, chirality, enantiomers,	
	molecules with two similar and dissimilar chiral-centres, distereoisomers,	15
	mesostructures, racemic mixture.	
	3.1.2 Flying-wedge, Fischer, Newman and Sawhorse projection formulae (erythro,	
	threo isomers) and their interconversion.	
	3.1.3 Relative and absolute configuration: D/L and R/S designations.	
	3.1.4 Geometrical isomerism in alkenes and cycloalkanes: cis-trans isomerism and E/Z	
	notations with C.I.P rules.	
	3.1.5 Conformational analysis of alkanes (ethane, propane and n-butane) and their	
	relative stability on the basis of energy diagrams.	
		<u> </u>

Course Code: RUSCHEP101

Experiments to Be Covered	
i) Determination of the strength of the supplied sodium hydroxide solution, using	
solution of a primary standard for acid base titration.	
ii) Determination of the strength of the supplied sodium thiosulphate solution.	
iii) To determine value of ideal gas constant R in different units by eudiometer method.	
iv) To determine relative viscosity of a given polymer solution using Ostwald's	
viscometer.	
v) To determine the percentage composition of a mixture gravimetrically (BaSO ₄ +	
NH ₄ Cl)	
vi) Semi-Micro Qualitative analysis of a binary mixture containing two cations and two	
anions (Only non-interfering radicals)	
vii) Purification of a given organic compound by crystallization with solvent/solvent-	
free. (Minimum three).	
ix) Characterization of solid organic compounds (Minimum three Compounds)	
x) To determine the individual strength of Sodium Carbonate and Sodium Bicarbonate in	
a mixture of the two using two indicators.	
xi) To Determine the Strength of commercially available sample of HCl.	

SEMESTER II

Course Code: RUSCHE201

Unit	Content	No of
		Lectures
1	Chemical Thermodynamics-I	15
	1.1 Fundamental concepts in Thermodynamics: The macroscopic variables basic	
	definitions needed to describe thermodynamic systems, equations of state and the ideal gas law.	
	1.2 First Law of Thermodynamics : Work, heat, and internal energy, Operational	
	definitions, the molecular interpretation of heat, work and internal energy, the	
	formulation of the First Law, state functions, and path functions	
	1.3 Work: The general expression for work, Expansion against constant pressure,	
	Reversible expansion, Comparing Work for Reversible and Irreversible Processes	
	1.4 Heat transactions: Heat capacity, the definition of enthalpy, Enthalpy change and heat	
	transfer, the variation of enthalpy with temperature. Heat capacity at constant pressure	
	and volume, the relation between heat capacities.	
	1.5 Thermochemistry: Standard enthalpy changes, Hess's law, The temperature	
	dependence of reaction enthalpies. Using Kirchhoff's law, application in biochemistry	
	and materials science, experimental techniques i) Differential scanning calorimetry ii)	
	Isothermal titration calorimetry	
2	Concept of Qualitative Analysis and Acid Base Theories:	15
	2.1.1 Macro, Semi-Micro, Micro, Ultra Micro, Trace Analysis	
	2.1.2 Reactions involving liberation of gases, Use of Papers impregnated with Reagents	
	in qualitative analysis (With reference to papers impregnated with starch-iodide,	
	potassium dichromate, lead acetate, dimethyl glyoxime, and oxine reagents) (balanced	
	Chemical Reactions expected).	
	2.1.3 Precipitation equilibria: Factors affecting the solubility of an ionic compound viz.	
	common ions, uncommon ions, temperature, nature of the solvent, pH, complexing	
	agents (Balanced Chemical Equations and Numerical Problems Expected)	
	2.2 Acid-Base Theories	

2.2.1 Arrhenius; Lowry-Bronsted concept; Classification of solvents, auto dissociation of amphiprotic solvents, Lewis concept; Usanovich concept 2.2.2 Hard and Soft Acids and Bases-HSAB (with respect to occurrence and feasibility of chemical reaction);. 3 15 **Chemistry of Aliphatic Hydrocarbons:** 3.1.1 Carbon-Carbon sigma bond: Chemistry of alkanes: Methods of Preparation of alkanes, Wurtz reaction, Wurtz-Fittig reaction, reactions of alkanes, free radical substitutions: Halogenation - relative reactivity and selectivity. 3.1.2 Carbon-Carbon pi bonds: alkenes and alkynes, methods of preparation of alkenes and alkynes by elimination reactions: mechanism of E1 and E2. Saytzeff and Hofmann eliminations. 3.1.3 Reactions of alkenes: electrophilic addition and mechanism (Markownikoff/ Anti Markownikoff addition). Mechanism of ozonolysis, reduction (catalytic and chemical), syn and anti-hydroxylation (oxidation). 1, 2 and 1, 4-addition reactions in conjugated dienes, Diels-Alder reaction; Allylic and benzylicbromination using N-bromosuccinimide and its mechanism. 3.1.4 Methods of Preparation and reactions of alkynes: Acidity, electrophilic and nucleophilic additions. Hydration to form carbonyl compounds, alkylation of terminal alkynes.

Course Code: RUSCHE202

Unit	Content		
		Lectures	
1	1. Chemical Kinetics – I and Photochemistry	15	
	1.1.1 Rate of a reaction, rate constant and measurement of reaction rates.		
	1.1.2 Order and molecularity of reaction.		
	1.1.3 Integrated rate equation for zero, first and second order reactions (with		
	equal and unequal initial concentration of the reactants).		
	1.1.4 Kinetic characteristics of zero, first and second order reactions. 1.1.5		
	Numerical problems based on zero, first and second order reactions,		
	Applications of kinetic study		
	1.1.6 Methods for the determination of the order of a reaction		
	2. Photochemistry		
	1.2.1 Electromagnetic radiation, photochemical reactions, first and second		
	law of photochemistry, photochemical and thermal reactions.		
	1.2.2 Quantum yield, measurement of quantum yield, actinometers.		
2	Chemical Bond and Reactivity	15	
	2.1.1Types of chemical bonds; comparison between ionic and covalent		
	bonds; polarizability and its effect on a bond, (Fajan's Rules).		
	2.1.2 Shapes of simple molecules: Lewis dot structures; Sidgwick-Powell		
	theory; Basic VSEPR Theory for ABn type of molecules (neutral or charged		
	species), with and without lone pair of electrons.		
	2.1.3 Isoelectronic species; applications and limitations of VSEPR Theory.		
3	Chemistry of Aromatic Hydrocarbons	15	
	3.1.1 Aromaticity: Benzene, Kekule's formulation of benzene structure		
	(historical background), Hückel's rule, anti-aromaticity, aromatic character		
	of arenes.		

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR F.Y B.Sc Sem I & Sem II CHEMISTRY 2022-2023

- 3.1.2Aromaticity: cyclic carbocations/carbanions and heterocyclic compounds with suitable examples, aromaticity and acidity, relative stabilities.
- 3.1.3 Electrophilic aromatic substitution: sulphonation and Friedel-Craft alkylation/acylation and mechanisms for the same, mechanism of halogenation, nitration of benzene:
- 3.1.4 Directing effects of the substituents/groups on electrophilic aromatic substitution, reactions of mono substituted benzene derivatives (-CH₃, -NH₂, -OH, NO₂, -X)
- 3.1.5 Nucleophilic aromatic substitution of Aryl halides (replacement by OH group and effect of nitro substituent).

Course Code: RUSCHEP201

Experiments to Be Covered	
i) To determine the rate constant of the acid catalyzed hydrolysis of methyl acetate.	
ii) Determination of the strength of the supplied iodine solution using the sodium	
thiosulphate solution of known strength.	
iii) To study thermodynamic parameters of a simple chemical reactions.	
iv) To determine the valence factor of KMnO4 by titrating with oxalic acid.	
v) To determine the percentage composition of a mixture gravimetrically (ZnO +	
ZnCO ₃)	
vi) Semi-Micro Qualitative analysis of a binary mixture containing two cations and two	
anions (Should also include interfering radicals) (Minimum three mixtures)	
vii) Chemical synthesis (one step)	
a) Preparation of Iodoform derivative of methyl ketone.	
b) Preparation of acetyl derivative of primary amine.	
c) Preparation of 2,4-DNP derivative of carbonyl compound	
viii) To determine the acid neutralising capacity of commercially available sample of antacid.	
ix) Characterisation of Liquid Organic Compounds containing C, H, (O), N, X elements.	
(Minimum three compounds)	

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment - 40% (40 Marks)

Sr No	Evaluation Type		Marks
1	Assignment		15
2	Class Test (MCQ / Objectives)		20
3	Active Participation in Class (Seminars/Presentations)		05
	Total	16	40

B) External Examination: 60 % (60 marks) Semester End Theory Examination:

- i. Duration These examinations shall be of two hours duration.
- ii. Theory question paper pattern:-
- 1. There shall be **three** questions each of **20** marks. On each unit there will be one question.
- 2. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions based on
Q.1)	Any 5 out of 7	20	Unit I
			0 3330 5
Q.2)	Any 5 out of 7	20	Unit II
	3.7		
Q.3)	Any 5 out of 7	20	Unit III
	00		
	Total	60	

Practical Examination Pattern:

(A) Internal Examination: 40 % (20 Marks)

Particulars	Paper I	Paper II
Journal	05	05
Experimental Work	10	10
Participation	05	05
Total	20	20

B) External Examination: 60 % (30 Marks)

Semester End Practical Examination:

Particulars	Paper I	Paper II
Laboratory Work	25	25
Viva	05	05
Total	30	30

PRACTICAL BOOK/JOURNAL

- > The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.
- > In case of loss of Journal and/ or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / In-charge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern:

Course	101				102		Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

(Total Marks: 300)

Resolution Number: AC/I(21-22).2(II).RUS5

S.P. Mandali's Ramnarain Ruia Autonomous College (Affiliated to University of Mumbai)

Syllabus for Semester III & IV Program: S.Y.B.Sc. Program Code: RUSCHE

(Credit Based Semester and Grading System with effect from the academic year 2022-2023)

Semester III

Course Code: RUSCHE301
Course Title: CHEMISTRY-I
Academic Year 2022-2023

Course Outcomes:

After stu	udying the course, the learner will be able to:						
CO 1	Understand significance of Gibb's and Helmholtz Free Energy and its applications.						
CO 2	Apply Clapeyron equation to various phase transitions.						
CO 3	Derive van't Hoff's Reaction Isochore and Isotherm.						
CO 4	Derive various Maxwell relations.						
CO 5	Give relationship between conductance, specific conductance, equivalent conductance and molar conductance.						
CO 6	Describe the concept of Transport Number.						
CO 7	Know the applications and Limitations of Valence Bond Theory						
CO 8	Predict geometry of molecules based on Hybridization.						
CO 9	Determine Bond Order, bond energy and magnetic behaviour of the compound based						
	on Molecular Orbital Theory.						

DETAILED SYLLABUS

RUSCHE301	CHI	EMISTRY-I	Credits-02		
Unit	Unit Unit Title				
I	Chen	nical Thermodynamics-II	(15L)		
(0	1.0	Recapitulation			
	1.1	Variation of Gibb's free energy with			
00		Pressure and Temperature, Gibbs-			
		Helmholtz equation.			
	1.2	Thermodynamics of open systems:			
0-,		partial molal properties, chemical			
		potential and its variation with pressure			

		and temperature, Gibb's Duhem	
		equation.	
	1.3	1	. 0
	1.0	to phases in equilibria. Clausius-	1//
		Clapeyron equation and its application	
			CO^{-}
		to Liquid-Vapour equilibrium.	
	1.4		
	1.5		
		Hoff reaction isochore.	
	1.6	Maxwell's relations.	
II		ectrochemistry-I:	(15L)
		ectrolytic Conductance And Transport mber	
		Electronic and electrolytic Conductors:	
		Conductance, cell constant, specific	
		conductance, equivalent conductance and	
		molar conductance and their relationships.	
		Variation of Molar conductance with	
		concentration, for weak and strong	
		electrolytes. Concept of limiting molar	
		conductance. (Numericals are expected).	
	2.2	Debye-Huckel theory for strong electrolytes:	
		1) Relaxation effect 2) Electrophoretic effect.	
	2.2	Kohlrausch's law of independent migration	
1		of ions. Limiting molar conductances for	
		ions, determination of limiting molar	
~(),		conductance for weak electrolytes.	
	2.3	Measurement of conductance and	
		determination of cell constant.	
	2.4	Applications of conductance measurements:	
0-		Determination of degree of dissociation	
		1) Determination of degree of dissociation	

	and dissociation constant of weak electrolyte.	
	2) Determination of solubility and solubility	
	product of sparingly soluble salts.	\ O
	2.5 Transport number, relation between transport	1/10
	number and velocity of ions. Factors	
	affecting transport number.	
	2.6 Hittorf's Rule and experimental	
	determination of transport number using	
	Hittorf's method	
	2.7 Experimental determination of transport	
	number by moving boundary method.	
	(Numericals are expected).	
	2.8 Absolute ionic mobility, relation between	
	transport number, absolute ionic mobility and	
	limiting molar conductance of ion.	
III	Chemical Bonding	(15L)
	3.1. Valence Bond Theory	(07L)
	1.1.1 Valence bond theory: postulates of	
	VBT, need for hybridisation, Orbitals	
	involved in hybridisation sp , sp^2 , sp^3 ,	
	dsp , 2sp 3d , and sp 3d 2 , sd), energetics of	
	hybridisation, interaction between two	
	hydrogen atoms and their Potential	
	energy diagram, Bond energy of	
~0.	hydrogen molecule (experimental	
	value), Theoretical improvements in	
	hand an anary of bridge con mode only	
	bond energy of hydrogen molecule,	

Charg	ept of resonance and Formal ge; rules for resonance or nical structures with examples.	.10
3.2 Molecular C	Orbital Theory	(08L)
3.2.1. Concept of overlaps (s-s,s-p,	f orbital overlaps, types of orbital p-p)	(0)
3.2.2. Linear co	mbination of atomic orbitals to	
form molecular of	orbitals (LCAO-MO approach).	
3.2.3. Applicati	on of MOT to Homonuclear	
diatomic molecu	les from He ₂ molecule and for all	
the elements o	f second period, heteronuclear	
diatomic molecu	les	
(HCl, NO)		
3.2.4 Molecular	orbital Theory and determination	
of Bond Order	and magnetic behaviour for	
$O_2, O_2^+ O_2^-, O_2^{-2}$		
(Problems are	expected wherever applicable)	

Course Code: RUSCHE302 <u>Course Title: CHEMISTRY-II</u> Academic year 2022-2023.

Course Outcomes:

After s	tudying the course, the learner will be able to:
CO 1	Know the reactions of halogenated hydrocarbons.
CO 2	Assign Nomenclature to organometallic compounds, alcohols, phenols and epoxides.
CO 3	Compare the acidic strengths of alcohols and phenols.
CO 4	Write mechanisms of condensation reactions.
CO 5	Know the use of active methylene compounds in organic synthesis.
CO 6	Understand the concept of electron deficient compounds and its correlation with Lewis acidity.
CO 7	Draw the structure and bonding involved in diborane and tetraborane.
CO 8	Comprehend the chemistry of Silicon and its compounds.

DETAILED SYLLABUS

RUSCHE302		CHEMISTRY-II	Credits-02
	Unit	Unit Title	Lectures
	I	Organic Chemistry – I	(15L)
	5	1.1. Reactivity and reactions of halogenated	(04L)
		hydrocarbons:	
?		1.1.1. Alkyl halides: Nucleophilic substitution	
		reactions: S_N^{-1} , S_N^{-2} and S_N^{-1} mechanisms with	
20		stereochemical aspects, factors affecting	
		nucleophilic substitution reactions: nature of	
		substrate, solvent, nucleophile and leaving group.	
0-		1.1.2. Aryl halides: Reactivity of aryl halides	
		towards nucleophilic substitution reactions.	

	Nucleophilic aromatic substitution (S _N Ar),	4
	addition-elimination and benzyne mechanism.	
	1.2 Organomagnesium and Organolithium	(03L)
	compounds:	
	Type, Nomenclature. Nature, and reactivity of	
	carbon-metal bond. Method of preparation using	
	alkyl / aryl halide. Structure, stability and reactions	
	of these compounds with compounds containing,)
	acidic hydrogen, carbonyl, cyanides group,	
	epoxides and CO ₂ .	
	1.3. Alcohols, phenols and epoxides:	(08L)
	1.3.1. Alcohols: Nomenclature, Methods of	
	Preparation:	
	1. Hydration of alkenes 2.Hydrolysis of alkyl	
	halides 3. Reduction of aldehydes and ketones 4.	
	Using Grignard reagent.	
	Properties: Hydrogen bonding, effect of hydrogen	
	bonding on properties. Acidity of alcohols,	
	Reactions of alcohols	
	1.3.2. Phenols: methods of preparation, physical	
	properties and acidic character, comparative acidic	
	strengths of alcohols and phenols, resonance	
	stabilization of phenoxide ion, reactions of	
(0	phenols.	
	1.3.3 . Epoxides: Nomenclature, methods of	
	preparation and reactivity of epoxides, reactions of	
	epoxides, ring opening reactions by nucleophiles,	
	acid hydrolysis, reaction with halogen halide,	
	alcohol, hydrogen cyanide. Reactions with	
	ammonia, amines, Grignard reagents, alkoxides.	

II	Organic Chemistry II:	(15L)
	Chemistry of Carbonyl Compounds	
	2.1 Carbonyl Compounds:	116
	Nomenclature of aliphatic, alicyclic and aromatic	
	carbonyl compounds, structure, reactivity of	(0)
	aldehydes and ketones .	
	methods of preparation: oxidation of primary and	
	secondary alcohols using PCC, hydration of	
	alkynes, action of Grignard reagent on esters,	
	Rosenmund reduction, Gattermann - Koch	
	formylation and Friedel Craft acylation of arenes.	
	2.2 Mechanism of nucleophilic addition, and acid	
	catalyzed nucleophilic addition reactions.	
	2.3 Reactions of aldehydes and ketones with	
	NaHSO ₃ , HCN, RMgX, alcohol, amine, phenyl	
	hydrazine, 2,4-Dinitrophenyl hydrazine, LiAlH ₄	
	and NaBH _{4.}	
	2.4 Mechanism of the following reactions:	
	Benzoin condensation, Knoevenagel	
	condensation, Claisen-Schmidt and Cannizzaro	
•	reaction.	
	2.5 Keto-enol tautomerism: mechanism of acid	
4 O-	and base catalysed enolization	
	2.6 Compounds with active methylene:	
70	Acetylacetone, ethyl acetoacetate diethyl	
	malonate, stabilised enols.	
	Reactions of Acetylacetone and ethyl	
0-	acetoacetate: alkylation, conversion to ketone,	
	mono- and dicarboxylic acid.	

III	Chemistry of p block elements (Group 13	(15L)
	& 14)	
	3.1 Chemistry of Group 13 elements	.16
	3.1.1 Electronic configuration, Trends in metallic	
	characters: Oxidation states and Inert pair effect.	100
	3.1.2 Electron deficient compounds – BH ₃ , BF ₃ ,	
	BCl ₃ with respect to Lewis acidity and	
	applications.	
	3.1.3 Preparation of simple boranes like diborane	
	and tetraborane.	
	3.1.4 Structure and bonding in diborane and	
	tetraborane (2e-3c bonds)	
	3.1.5 Borazine – Preparation, properties, Structure	
	and bonding.	
	3.2 Chemistry of Group 14 elements	
	3.2.1 Electronic configuration, Trends in metallic	
	characters: Oxidation states and Inert pair effect.	
	3.2.1 Silica: Occurrence, Structure and inertness.	
	3.2.2 Methods of preparation of SiCl ₄ and its	
	structure.	
	3.2.3 Preparation of extra pure Silicon – Zone	
•	refining and Single Crystal method	
	3.2.4 Silicones – Preparation, classification,	
4.0-	properties and uses.	

Course Code: RUSCHE303 Course Title: CHEMISTRY-III Academic year 2022-2023

Course Outcomes:

After stud	lying this course, the learner will be able to:
CO 1	Elaborate on the scope and importance of Analytical Chemistry.
CO 2	Describe and compare a range of classical and instrumental methods and will be
	able to explain their underlying theoretical principles.
CO 3	Enlist the advantages/disadvantages of classical & instrumental methods of analysis.
CO 4	Outline the steps involved in the analysis of a sample.
CO 5	Choose an appropriate analytical method to prepare, separate and quantify samples
	from various matrices.
CO 6	Classify different errors according to their sources
CO 7	Determine the different kinds of errors involved in chemical analysis.
CO 8	Suggest methods that can be adopted to minimize the different types of errors.
CO 9	Apply the scientific process, including statistical treatment of data, in the conduct
	and reporting of chemical analysis.
CO 10	Discuss the factors affecting the solubility of a precipitate.
CO 11	Enumerate the different steps involved in a precipitation gravimetry.
CO 12	Explain the effect of various experimental factors on the particle size of the
	precipitate.
CO 13	Define the various terms involved in titrimetric analysis.
CO 14	Explain the theory of acid-base indicators and choose a suitable indicator for a
	particular acid-base titration.
CO 15	Relate some of the properties of the water to its chemical makeup.
CO 16	Describe the composition of ground water.

DETAILED SYLLABUS

	calibration of volumetric glassware, burettes,	
	pipettes and volumetric flasks.	
	1.7 Measurement, errors involved in the	.0
	measurement, propagation of errors, random,	1/6
	gross and determinate errors, classification of	
	determinate errors, instrumental, methodic,	
	operational personal errors, minimization of	
	errors.	3
	1.8 Accuracy and precision, measures of	
	accuracy: absolute error and relative error,	
	constant error and proportionate error, measures	
	of central tendency and dispersion: mean, mode,	
	median, deviation, absolute, relative, average,	
	standard deviation, range, review of data with	
	respect to accuracy and precision. (Numericals	
	and arma at ad)	
	are expected).	
II	Classical methods of analysis	(15L)
II	- 1	(15L) (07L)
II	Classical methods of analysis	` ′
II	Classical methods of analysis 2.1 Gravimetric analysis:	` ′
II	Classical methods of analysis 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types	` ,
II	Classical methods of analysis 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction	` ,
II	Classical methods of analysis 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and	` ′
П	Classical methods of analysis 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and solubility product, factors affecting solubility:	` ′
П	Classical methods of analysis 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and solubility product, factors affecting solubility: temperature, common and diverse ion effect, pH,	` ′
П	Classical methods of analysis 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and solubility product, factors affecting solubility: temperature, common and diverse ion effect, pH, nature of the solvent, complexation. 2.1.2 Unit operations in gravimetric analysis,	` ′
П	Classical methods of analysis 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and solubility product, factors affecting solubility: temperature, common and diverse ion effect, pH, nature of the solvent, complexation. 2.1.2 Unit operations in gravimetric analysis, precipitation, homogenous and heterogeneous	` ′
П	Classical methods of analysis 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and solubility product, factors affecting solubility: temperature, common and diverse ion effect, pH, nature of the solvent, complexation. 2.1.2 Unit operations in gravimetric analysis, precipitation, homogenous and heterogeneous precipitation, relative super saturation,	` /
II	Classical methods of analysis 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and solubility product, factors affecting solubility: temperature, common and diverse ion effect, pH, nature of the solvent, complexation. 2.1.2 Unit operations in gravimetric analysis, precipitation, homogenous and heterogeneous precipitation, relative super saturation, nucleation and crystal growth, their effect on	` ′
II	Classical methods of analysis 2.1 Gravimetric analysis: 2.1.1 Introduction to gravimetric analysis, types of gravimetric analysis, conditions for a reaction to be used in gravimetric analysis, solubility and solubility product, factors affecting solubility: temperature, common and diverse ion effect, pH, nature of the solvent, complexation. 2.1.2 Unit operations in gravimetric analysis, precipitation, homogenous and heterogeneous precipitation, relative super saturation,	` '

	washing of the precipitate, drying and	
	incineration, use of thermal methods.	
	2.2 Titrimetric analysis	(08L)
	2.2.1 Introduction to titrimetric analysis,	
	conditions for a reaction to be used in titrimetric	40/2
	analysis, terms involved: titrant, titrand,	
	indicator, equivalence point, endpoint, titration	
	error, types of titrations.	
	2.2.2 Acid –base titrations	
	2.2.2.1 Acid base indicators, theory of acid base	
	indicators, conditions for choosing an indicator.	
	2.2.2.2 Types of acid base titrations, titration	
	curves.	
	2.2.2.3 Construction of the titration curves and	
	the choosing of the indicator for	
	A) strong acid –strong base	
	B) strong acid -weak base	
	C) weak acid – strong base	
	D) weak acid -weak base	
	2.2.4 Titration of dibasic acid with a strong base,	
	condition for obtaining two separate equivalence	
	points, qualitative description of the titration	
	curve, determination of the dissociation constant.	
	2.2.4 Titration of phosphoric acid with a strong	
(4	base.	
III	Environmental Chemistry	(15L)

- **3.1** Chemistry of water
- **3.1.1** Water as a natural resource: Physical and Chemical properties of water, significance of water as an universal solvent and its properties viz. pH, Dielectric constant, boiling point. Anomalous behaviour of water.
- **3.1.2** Hydrological cycle. chemical composition of ground water.
- **3.1.3** Factors affecting solubility of gases in water . Solubility of CO_2 and O_2 in water
- **3.1.4** Water quality: Parameters for determining water quality i) Physical parameters: pH, pE, conductivity, TS, TSS, TDS ii) Chemical Parameters- acidity, alkalinity, hardness, salinity, chlorine demand, DO, COD, iii) Biological parameter BOD, MPN
- 3.1.5 Standards for Potable and industrial water.

Semester-III Practical Credits: 3

RUSCHEP301	CHEMISTRY-I
	1. To study the kinetics of the reaction between K ₂ S ₂ O ₈ and KI for equal concentration.
	2. To determine conductance, specific conductance and molar conductance for given
	electrolyte solution.
	3. To determine degree of dissociation and dissociation constant of weak electrolyte and
	hence to verity Ostwald's dilution law.
	4. To determine solubility of a sparingly soluble salt conductometrically.
	5. To determine the amount of strong acid in the given solution by conductometric
	titration.
	6. To determine the amount of strong acid in the given solution by pH-metric titration.
RUSCHEP302	CHEMISTRY-II
	Qualitative determination of anion and molecular composition of the salts such as copper
	sulphate pentahydrate, nickel chloride hexahydrate, anhydrous cupric chloride using
	volumetric methods. (Learners will prepare EDTA solution).
	Minimum four salt samples will be given to every student.
	Organic preparation and their purification: Use 0.5-1.0g of the organic compound.
	Purify the product by recrystallization. Report theoretical yield, percentage yield and
	melting point of the purified product.
	Preparation of:
	1. Cyclohexanoneoxime from cyclohexanone.
	2. Tribromoaniline from aniline.
	3. m-Dinitrobenzene from nitrobenzene
	4. Phthalic anhydride from phthalic acid by sublimation
	5. Preparation of 5-nitrosalicylic acid from salicylic acid.
	6.Benzoic acid from benzamide.
191	7. Magneson – II from p-nitroaniline
RUSCHEP303	CHEMISTRY-III

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR S..Y.B.Sc Sem-III & Sem-IV CHEMISTRY 2022-2023

- 1. Gravimetric estimation of Nickel (II) as Ni-DMG.
- 2. Gravimetric estimation of barium ions as BaSO₄.
- 3. To carry out the calibration ofpipette and burette.
- 4. To determine hardness of given water sample.
- 5. To determine Dissolved Oxygen of the given water sample.
- 6. To determine the COD of water sample.

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment - 40% (40 Marks)

Sr No	Evaluation Type	Marks
1	Assignment	15
2	Class Test (MCQ / Objectives)	20
3	Active Participation in Class (Case studies/Seminars/Presentations)	05
	Total	40

B) External Examination: 60 % (60 marks) Semester End Theory Examination:

- (B) Duration These examinations shall be of **two hours** duration.
- (C) Theory question paper pattern :-

There shall be **three** questions each of **20** marks. On each unit there will be one question.

All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions based on
Q.1)	Any 5 out of 7	20	Unit I
Q.2)	Any 5 out of 7	20	Unit II
Q.3)	Any 5 out of 7	20	Unit III
	Total	60	

Practical Examination Pattern:

(A) Internal Examination: 40 % (20 Marks)

Particulars	Paper I	Paper II	Paper-III
Journal	05	05	05
Experimental Work	10	10	10
Participation	05	05	05
Total	20	20	20

(A) External Examination: 60 % (30 Marks)

Semester End Practical Examination:

Particulars	Paper I	Paper II	Paper II
Laboratory Work	25	25	25
Viva	05	05	05
Total	30	30	30

PRACTICAL BOOK/JOURNAL

- > The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.
- ➤ In case of loss of Journal and/or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / In-charge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern:

Course		301		302			303			Grand Total
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150

(Total: 450 marks)

Semester IV Course Code: RUSCHE401 Course Title: CHEMISTRY-I

Academic year 2022-2023

Course Outcomes:

After stud	lying the course, the learner will be able to:
CO 1	Apply the concepts of Gibbs' and Helmholtz Free Energy to EMF measurements.
CO 2	Understand the significance of Gibbs' and Helmholtz Free Energy and its
	applications to EMF measurements.
CO 3	Describe the types of Electrodes and Electrochemical Cells
CO 4	Derive Nernst Equation and can give its applications.
CO 5	Calculate the pH for strong and weak electrolytes and Buffer Action.
CO 6	Classify solutions on the basis of intermolecular forces.
CO 7	Determine molecular weight of a component in a given mixture by steam
	distillation.
CO 8	Apply phase rule to One-Component and Two-Component systems.
CO 9	Comprehend various Properties of Transition Metals.
CO 10	Define basic Terms involved in Co-ordination chemistry.
CO 11	Apply Werner's Theory to understand the model of co-ordination compounds.
CO 12	Know the significance of co-ordination compounds.
CO 13	Describe the nature of the Metal-Ligand Bond.

RUSCHE401		CHEMISTRY-I	Credits-02
	Unit	Unit Title	Lectures
	I	Electrochemistry II and Concept of pH and	(15L)
		Buffers	
		1.1.Electromotive Force of Galvanic Cells	(10L)
		1.1.1 Electrochemical cells, galvanic cells,	
		reversible cells and reversible electrodes,	
		conventions to represent Galvanic cells.	
		1.1.2 Types of electrodes, standard electrode	
		potential, electrochemical series.	
		1.1.3 Cell potential and standard cell potential.	
		1.1.4 Nernst equation and its importance.	
		1.1.5 Calculation of thermodynamic parameters:	
		ΔG , ΔH , ΔS and equilibrium constant from	
		EMF data.	
		1.1.6 Classification of galvanic cells: chemical	
		cells and concentration cells	
		1.1.7 Determination of pH using glass electrode	
		and quinhydrone electrode.	
	0	1.2 pH and Buffers	(05 L)
		1.2.1 pH concept, calculation of pH for strong and	
		weak electrolytes	
		1.2.2 Buffer, Henderson's equation for acidic and	
~0.		basic buffer	
		1.2.3 Buffer Capacity.	
(1).		(Numericals are expected).	
	II	Solutions of Liquid in Liquid and Phase	(15L)
9		Equilibria	

	2.1 Solutions of Liquid In Liquid	(08 L)
	2.1.1 Thermodynamics of ideal solutions: ideal	
	solutions and Raoult's law, deviations from	.10
	Raoult's law.	
	2.1.2 Vapour pressure-composition and	. 0,
	temperature –composition curves of ideal and non-	
	ideal solutions. Distillation of liquids forming	
	ideal and non-ideal solution, Azeotropes, steam	
	distillation.	
	2.1.3 Partially miscible liquids: critical solution	
	temperature; systems with upper critical solution	
	temperature, lower critical solution temperature	
	and having both.	
	2.1.4 Nernst distribution law and its applications	
	to solvent extraction	
	2.2 Phase Equilibria	(07L)
	2.2.1 Terms involved: Phases, components and	
	degrees of freedom. Gibbs Phase Rule.	
	2.2.2 Phase diagrams of one-component systems	
	(water, CO ₂ and sulphur).	
	2.2.3 Two component systems involving	
	eutectic (lead-silver system)	
III	Comparative Chemistry of transition metals and	(15L)
	Co-Ordination Chemistry	
	3.1: Chemistry of Transition Metals	(06 L)
~0.	3.1.1 Position in the periodic table, electronic	
	configuration.	
	3.1.2 Significance of special stability of d ⁰ , d ⁵ and	
	d ¹⁰ configurations, Variable oxidation states and	
7	their stabilities in aqueous solutions; ability to form	

complexes, colour, magnetic property, catalytic	
property.	
3.2 Coordination Chemistry:	(05 L)
3.2.1 Historical perspectives;	
3.2.2 Molecular compounds – Double salts and	100
Complex salts	
3.2.3 Werner's theory	
3.2.4 Basic terms viz complex ion, charge on the	
complex, ligands, coordination number, oxidation	
state, & Nomenclature	
3.2.5 Sidgwick – Powel Theory of coordination	
compounds; Effective atomic number rule.	
3.2.6 Stereoisomerism and optical isomerism of	
coordination compounds (C.N.= 4 and 6).	
3.2.7 Evidence for the formation of coordination	
compounds.	
3.2.8 Application of coordination compounds.	
3.3. Nature of the Metal-Ligand Bond:	(04L)
3.3.1 Application of VBT to complexes with	
coordination number 4, 5 & 6, Inner and outer	
orbital complexes.	

Course Code: RUSCHE402 <u>Course Title: CHEMISTRY-II</u> Academic year 2022-2023.

Course Outcomes:

After s	After studying this course, the learner will be able to:						
CO 1	Write reactions of Carboxylic and sulphonic acids and their derivatives						
CO 2	Assign Nomenclature and explain the nature, type and reactivity of Amines and						
	Diazonium Compounds						
CO 3	Write reactions for the preparation of given heterocyclic Compounds.						
CO 4	Classify Organometallic compounds and illustrate their catalytic applications.						
CO 5	Comprehend the chemistry of metal carbonyls.						

	CHEMISTRY-II	Credits-02
Unit	Unit Title	Lectures
I	Chemistry of Carboxylic and Sulphonic Acids	(15L)
	 1.1Carboxylic Acids and their derivatives` 1.1.1. Nomenclature, structure and physical properties, acidity of carboxylic acids, effects of substituents on acid strength of aliphatic and aromatic carboxylic acids. 1.1.2. Preparation of carboxylic acids: oxidation of alcohols and alkyl benzene, carbonation of Grignard reagent and hydrolysis of nitriles. 1.1.3. Reactions: Acidity, salt formation, decarboxylation, reduction of carboxylic acids with LiAlH₄, diborane, Hell-Volhard-Zelinsky 	(11L)
		Unit Title I Chemistry of Carboxylic and Sulphonic Acids 1.1Carboxylic Acids and their derivatives` 1.1.1. Nomenclature, structure and physical properties, acidity of carboxylic acids, effects of substituents on acid strength of aliphatic and aromatic carboxylic acids. 1.1.2. Preparation of carboxylic acids: oxidation of alcohols and alkyl benzene, carbonation of Grignard reagent and hydrolysis of nitriles. 1.1.3. Reactions: Acidity, salt formation, decarboxylation, reduction of carboxylic acids

		amides and acid anhydrides and their relative	
		reactivity.	Ċ
		1.1.4. Mechanism of nucleophilic acyl and acid-	103
		catalysed nucleophilic acyl substitution.	
		Interconversion of acid derivatives by	
		nucleophilic acyl substitution.	\mathcal{O}
		1.1.5. Mechanism of Claisen condensation and	
		Dieckmann condensation.	
		1.2 Sulphonic acids:	(4L)
		1.2.1 Nomenclature, preparation of aromatic	
		sulphonic acids by sulphonation of benzene (with	
		mechanism), toluene and naphthalene.	
		1.2.2 Reactions: Acidity of arene sulfonic acid,	
		comparative acidity of carboxylic acid and	
		sulfonic acids reactions of arenesulphonic acid	
		such as salt formation, desulphonation ,	
		phosphorous pentachloride, ipso substitution.	
	II	Chemistry of Amines and Heterocyclic	(15L)
		Chemistry	
	4	2.1Amines:	(4L)
		2.1.1. Nomenclature, effect of substituent on	
		basicity of aliphatic and aromatic amines.	
		2.1.2.Preparation: Reduction of aromatic nitro	
	0	compounds using catalytic hydrogenation,	
		chemical reduction using Fe-HCI, Sn-HCl, Zn-	
40		acetic acid. Reduction of nitriles, ammonolysis of	
		halides, reductive amination, Hofmann	
		bromamide reaction.	
.0.		2.1.3. Reactions: salt Formation, N-acylation, N-	
		alkylation, Hofmann' exhaustive methylation	

	(HEM), Hofmann-elimination, carbylamine	
	reaction, reaction with nitrous acid, Electrophilic	
	substitution in aromatic amines: bromination,	.0
	nitration and sulphonation.	1//6
	2.2 Diamanium Calta	(21)
	2.2 Diazonium Salts:	(3L)
	2.2.1 Preparation: - Sandmeyer reaction,)
	Gattermann reaction, Gomberg reaction.	
	Reactions: Replacement of diazo group by -H,-	
	OH. Azo coupling with phenols, naphthols and	
	aromatic amines, reduction of diazonium salt to	
	aryl hydrazine and hydroazobenzene. Synthetic	
	application.	
	2.3 Heterocyclic Compounds:	(8L)
	2.3.1. Classification, nomenclature, electronic	
	structure, aromaticity in 5-numbered and 6-	
	membered rings containing one heteroatom.	
	2.3.2 Synthesis of Furan, Pyrrole (Paal-Knorr	
	synthesis, Knorr pyrrole synthesis, and Hantzsch	
	synthesis), Thiophene, Pyridine (Hantzsch	
	synthesis).	
	2.3.3. Reactivity of furan, pyrrole and thiophene	
	towards electrophilic substitution reactions on the	
	basis of stability of intermediate and of pyridine	
. 0	on the basis of electron distribution. Reactivity of	
	pyridine towards nucleophilic substitution on the	
VO.	basis of electron distribution.	
	2.3.4. Reactions of furan, pyrrole and thiophene:	
	halogenation, nitration, sulphonation, Vilsmeier-	
	Haack reaction, Friedel-Crafts reaction. Furan:	
	Diels-Alder reaction, ring opening. Pyrrole:	

	Acidity and basicity of pyrrole. Comparison of	
	basicity of pyrrole and pyrrolidine.	
	2.3.5. Pyridine: Basicity. Comparison of basicity	1/4
	of pyridine, pyrrole and piperidine. Reaction:	
	sulphonation (with and without catalyst),	(0)
	Chichibabin reaction.	
III	Chemistry of Group 15 and Group 16 Elements	(15L)
	and Basics of Organometallic Chemistry	
	3.1 Chemistry of Group 15 and 16 Elements	(08L)
	3.1.1 Trends in physical and chemical properties	
	of Group – 15 and Group – 16 Elements	
	3.1.2 Study of Compounds such as oxyacids of N	
	and S with respect to preparation, properties and	
	structure.	
	3.1.3 Physical properties of Hydrides of Group 15	
	and 16 Elements with respect to H- bonding.	
	3.2Organometallic Chemistry	(07L)
	3.1.1 Introduction, definition, classification based	
	on hapticity and nature of metal-carbon bond.	
	Eighteen electron rule and its applications,	
	exceptions	
	3.1.2 Importance and few applications of	
	organometallic compounds as catalysts (e.g.	
(0-	Ziegler-Natta catalyst, Wilkinson), reagents	
	in organic synthesis etc.	
100	3.1.3 Metal carbonyls: Bonding, general method	
	of preparation and properties of Ni(CO) ₄ ,	
	Fe(CO) ₅ .	

Course Code: RUSCHE403 Course Title: CHEMISTRY-III Academic year 2022-2023

Course Outcomes:

After com	pleting this course, the learner will be able to:	
CO 1	Categorize the different types of separation methods under physical, chemical,	
	mechanical methods.	
CO 2	Explain the basic principle of the solvent extraction and chromatography techniques.	
CO 3	Define the terms partition coefficient & distribution ratio.	
CO 4	Know the factors that affect extraction efficiency.	
CO 5	Describe the different types of solvent extraction and will be able to enlist the	
	advantages and limitation of each type.	
CO 6	Illustrate the role of chelating agents in solvent extraction.	
CO 7	Develop simple separation schemes and determine the optimal conditions for	
	isolating and separating analyte, based on distribution ratios.	
CO 8	Choose an appropriate mobile phase for the effective separation of different	
	components present in a sample.	
CO 9	Develop the chromatogram skilfully and will be able the apply the most suitable	
	method for the detection of the resolved components.	
CO 10	Apply the theoretical principles of chromatography learned to separate and quantify	
	different components present in a sample.	
CO 11	Explain the basic principle involved in quantitative analysis using UV-Vis	
	spectroscopy.	
CO 12	Derive the mathematical expression of Beer-Lambert's law.	
CO 13	Describe the function of the different components of a colorimeter and	
	spectrophotometer.	
CO 14	Distinguish between colorimeters & spectrophotometers.	
CO 15	Recognize the limitations of UV-Vis spectroscopy.	
CO 16	Explain the basic principle involved in different types of conductometric titrations.	
CO 17	Enlist the advantages and limitations of conductometric titrations.	

RUSCHE403		CHEMISTRY-III	Credits-02
	Unit	Unit Title	Lectures
	I	Methods of Separation	(15L)
		1.1Separation Techniques in analytical	(04L)
		Chemistry	5
		1.1.1 Introduction to separation Techniques	
		1.1.2 Separation and its importance in analytical	
		chemistry, estimation without separation.	
		1.1.3 Classification of separation methods	
		physical and chemical	
		1.1.4 Chemical methods, precipitation, complex	
		formation.	
		1.1.5 Physical methods of separation,	
		precipitation, fractional precipitation,	
		volatilization, distillation, fractional distillation,	
		vacuum distillation.	
		1.2 Solvent Extraction	(04L)
		1.2.1 Nernst's distribution law, partition	
		coefficient, distribution ratio,	
	0	1.2.2 Percentage extraction, extraction	
		efficiency, percentage extraction for single step	
)- ·	and multistep process with the same total volume	
		of the extracting solvent	
20		1.2.3. Modes of extraction: Chelation, ion-pair	
		formation and solvation.	
		1.2.4 Batch and continuous extraction, Counter	
0-,		current extraction	

1.3 Chromatography

1.3.1 Introduction, Stationary and mobile phase, common features of all chromatographic techniques, classification of chromatographic methods on the basis of physical state of the two phases.

1.3.2 Paper chromatography

- **1.3.2.1** Introduction and basic principles.
- **1.3.2.2** Stationary phase, transfer of the sample, mobile phase.
- **1.3.2.3** Methods of developing the chromatogram, methods of detection, physical, chemical and enzymatic.
- 1.3.2.4 Applications.
- **1.3.2.5** Comparison of the paper and thin layer techniques.

1.3.3 Thin layer chromatography

- **1.3.3.1** Introduction, mechanism of separation, retardation factor, basic principles.
- **1.3.3.2** Stationary phase, preparation and transfer of the sample, mobile phases and their nature.
- **1.3.3.3** Methods of development of the chromatogram, detection methods, physical and chemical.
- **1.3.3.4** Applications, for determination of purity, following the course of a chemical reaction.

(05L)

	1.4 High Performance Thin Layer	(02L)
	Chromatography	
	1.4.1 Introduction, Choice of stationary and	\ O
	mobile phases, sample application,	11/6
	1.4.2 Development and recording in HPTLC,	
	1.4.3 Detectors used, single beam and double	()
	beam detectors, fluorometric detector,	
	1.4.4 Quantitative determination,	
	1.4.5 Applications of HPTLC	
	1.4.6 Advantages and limitations	
	1.4.7 Comparison between TLC and HPTLC	
II	UV-VIS Spectroscopy and Conductometric	(15L)
	Titrations	
	2.1 UV- Visible Absorption spectroscopy:	(12L)
	2.1.1 Recapitulation of basic concept of	
	spectroscopy.	
	2.1.2 Terms involved in absorption	
	spectroscopy, monochromatic and	
	polychromatic radiation, radiant power,	
	absorbance, transmittance, absorptivity, molar	
	extinction coefficient, wavelength of maximum	
	absorption.	
	2.1.3 Statement of Beer's law & Lamberts' law	
.0),	combined mathematical expression for Beer-	
	Lambert's Law, deviations from Beer-Lambert's	
	law, types of deviations.	
	2.1.4 Components of an optical instrument and	
	their functions, photometers and	
	spectrophotometers.	

	2.1.5 Photometers: Sources, monochromators,	
	sample containers and detectors, block diagram	
	for a single and double beam photometer.	10
	(Numerical problems expected.)	1//
	2.1.6 Photometric titrations	40/2
	2.1.6.1 Basic principles, experimental set up and	
	operational procedures,	
	2.1.6.2 Requirements for a photometric titration,	2
	types of photometric titration curves, and	
	determination of equivalence point.	
	2.1.6.3 Advantages and limitations	
	2.2 Conductometric titrations	(03L)
	2.2.1 Conductometry and conductometric	
	titrations, basic principles, operational	
	procedure, determination of the equivalence	
	point.,	
	2.2.2 Conductometric titration curves for the	
	titration of	
	1] Acid –base titrations of all types	
	2] Displacement titration	
	3] Precipitation titrations	
	4] Complexometric titrations	
	2.2.3 Advantages and limitations.	
Ш	Industrial Chemistry	(15L)
(6	3.1 Concept of quality, Quality assurance,	
	Product Development (Formulation), Stability	
	Study, Quality control.	
	3.2 International Standards and their significance	

3.3 Unit Operations- Filtration, Distillation,	
Fractional distillation, Crystallisation	10
	1/10

Semester IV Practicals

RUSCHEP401	CHEMISTRY-I	Credits: 3
	1. To determine order of the reaction between K ₂ S ₂ O ₈ a	and KI for unequal
	concentrations.	
	2. To determine dissociation constant of weak acid by in	ncomplete titration
	method using pH meter.	
	3. To determine dissociation constant of weak acid by pH	I metric titration.
	4. To determine the amount of strong acid in the potentiometric titration	given solution by
	5. To determine standard cell potential (E^{O}_{cell}), standard	free energy change
	(ΔG^{O}) and equilibrium constant (K) for a given galvan	ic cell.
	6. To determine the amount of weak acid in the	given solution by
	conductometric titration.	
	CHEMISTRY-II	
	1. Qualitative Analysis of bi-functional organic compound	s (minimum four)
	on the basis of	
	i. Preliminary examination	
	ii. Solubility profile	
	iii. Detection of elements C, H, (O), N, S and X.	
~0.	iv. Detection of functional groups	
	v. Determination of physical constants (M.P/B.P)	
\mathcal{A}_{II}	Solid or liquid Compounds containing not more than two	o functional groups
	from among the following classes may be given for an	alysis to be given:
5	Carboxylic acids, phenol, carbohydrates, aldehydes, keto	ones, ester, amides,
	nitro, anilides, amines, alkyl and aryl halides.	

2. Separation of binary organic mixture (solid+solid) and (solid+liquid) on
the basis of type and nature. (Nature and physical constant expected).
Minimum four binary mixtures will be given to every student.

3. Inorganic preparation –

- 1. Tris(ethylene diamine) nickel (II) thiosulphate.
- 2. preparation of Copper DMSO
- 3. Preparation of magnesium oxalate.

CHEMISTRY-III

- 1. Chromatography: Separation of cations Fe(III), Ni(II) and Cu(II) in a sample by paper chromatography
- 2. To determine partition coefficient of iodine between water and CCl₄
- 3. Estimation of Fe(II) in the given solution by titrating against Ce(IV)potentiometrically.
- 4. Determination of amount of Fe (III) in the given solution by photometric titration using salicylic acid.
- 5. To verify Beer Lamberts law.
- 6. Determination of Calcium and Magnesium in the given sample of Dolomite ore.
- 7. To determine the purity of the given commercial sample of aspirin using phenol red indicator.

Reference Books for Physical Chemistry:

- 1) The Elements of Physical Chemistry, P.W. Atkins, Oxford University Press, Oxford.
- 2) Principles of Physical Chemistry. By Maron and Pruton 4th Ed. Oxford and IBH publication.
- 3) Physical Chemistry, G.M. Barrow, Tata McGraw Hill Publishing Co.Ltd. New Delhi.
- **4)** Modern Electrochemistry, J.O'M. Bockris& A.K.N. Reddy, Maria. Gamboa Aldeco. Springer.
- 5) Khosla B.D., Garg V.C. and Gulati A., Senior Practical Physical Chemistry, R. Chand and Co., New Delhi (2011).
- **6)** Athawale V.D. and Mathur P., Experimental Physical Chemistry, New Age International, New Delhi (2001)

References for Organic Chemistry:

- 1. Organic Chemistry, F. A. Carey, Tata McGraw-Hill Publishing company Ltd.
- 2. Paula Y. Bruice, Organic Chemistry, Pearson Education.
- **3.** Organic Chemistry, Finar, I. L. (Volume 1), Dorling Kindersley (India) Pvt. Ltd.
- **4.** Heterocyclic Chemistry, Synthesis reactions and Mechanisms, R.K Bansal, Wiley Eastern Ltd.
- 5. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009)
- **6.** Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., Textbook of Practical Organic Chemistry, Prentice-Hall, 5th edition, 1996

Reference Books for Inorganic Chemistry:

- 1. A.I. Vogel. "Textbook of Quantitative Inorganic Analysis," Longman, London (1961).
- 2. J. D. Lee, 4th Edn., Concise Inorganic Chemistry, ELBS, The group III elements Pg. 359-648.
- 3. D. F. Shriver and P. W. Atkins, Inorganic chemistry, 3rd edition, Oxford University Press (1999) page 325-446.

- 4. Puri, Sharma and Kalia, Milestone publishers, Principles of Inorganic Chemistry, page 416-628.
- 5. Concepts of Inorganic Chemistry by James Huheey
- 6. Inorganic Chemistry by R.L. Madan

References for Analytical Chemistry:

- 1. D. A. Skoog, D. M. West, F. J. Holler, and S. R. Crouch, Analytical Chemistry: An Introduction, 7th ed., Chapter 15, pp. 345-381.
- 2. A.I. Vogel. "Textbook of Quantitative Inorganic Analysis," Longman, London (1961).
- 3. R.V. Dilts. "Analytical Chemistry. Methods of Separation," van Nostrand, N.Y. (1974).
- 4. Asim K. Das, 'Environmental Chemistry with Green Chemistry' Books & Allied (P) Ltd.
- 5. K.A. Gavhane, 'Unit operations-I and II'

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment - 40% (40 Marks)

Sr No	Evaluation Type	Marks
1	Assignment	15
2	Class Test (MCQ / Objectives)	20
3	Active Participation in Class (Case studies/Seminars/Presentations)	05
	Total	40

B) External Examination: 60 % (60 marks) Semester End Theory Examination:

- (B) Duration These examinations shall be of two hours duration.
- (C) Theory question paper pattern:-
- 3. There shall be **three** questions each of **20** marks. On each unit there will be one question.
- 4. All questions shall be compulsory with internal choice within the questions.

Questions	Options	Marks	Questions based on
Q.1)	Any 5 out of 7	20	- Unit I
0.2)	A 5 4 65	20	
Q.2)	Any 5 out of 7	20	Unit II
Q.3)	Any 5 out of 7	20	
(10)	320,000,017		Unit III
	Total	60	

Practical Examination Pattern:

A) Internal Examination:- 40 % (20 Marks)

Particulars	Paper I	Paper II	Paper-III
Journal	05	05	05
Experimental Work	10	10	10
Participation	05	05	05
Total	20	20	20

(B) External Examination: 60 % (30 Marks)

Semester End Practical Examination:

Particulars	Paper I	Paper II	Paper II
Laboratory Work	25	25	25
Viva	05	05	05
Total	30	30	30

PRACTICAL BOOK/JOURNAL

- ➤ The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.
- ➤ In case of loss of Journal and/or Report, a Lost Certificate should be obtained from Head/ Co-ordinator / In-charge of the department; failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern:

Course		401		<i>⟨</i> ⟩	402			403		Grand Total
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150

(Total: 450 marks)

Resolution Number: AC/I(21-22).2(II).RUS5

S.P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for SEMESTER V & VI Program : T.Y.B.Sc.

Program Code: RUSCHE

(Credit Based Semester and Grading System with effect from the academic year 2022-2023)

Semester V Course Code:RUSCHE501 Course Title: CHEMISTRY-I Academic Year 2022-2023

Course Outcomes:

After stu	After studying this course, the learner will be able to:				
CO 1	Comprehend the fundamentals of rotational, vibrational and Raman spectra of				
	molecules.				
CO 2	Outline the applications of Galvanic Cells.				
CO 3	Apply Raoult's Law and Clapeyron Equation to study Colligative Properties				
CO 4	Understand reaction dynamics.				
CO 5	Apply principles of Surface Chemistry to Colloids				

RUSCHE501		CHEMISTRY-I	Credits-2.5
	Unit	Unit Title	Lectures
	I	MOLECULAR SPECTROSCOPY	(15L)
		1.1.Rotational Spectrum: Rotational spectrum of	
		a diatomic molecule, rigid rotor, moment of	
		inertia, energy levels, conditions for obtaining	
•	0	pure rotational spectrum, selection rule, nature	
		of spectrum, determination of inter-nuclear	
4° C	-	distance and isotopic shift.	
		1.2. Vibrational spectrum: Vibrational motion,	
VO.		degrees of freedom, modes of vibration,	
		vibrational spectrum of a diatomic molecule,	
		simple harmonic oscillator, energy levels, zero	
		point energy, conditions for obtaining	
		vibrational spectrum, selection rule, nature of	
		spectrum.	

	1.3. Vibrational-Rotational (IR) spectrum of	
	diatomic molecule: vibrating rotor, energy	
	levels, selection rule, nature of spectrum, P and	. \ (
	R branch lines, anharmonic oscillator, energy	
	levels, selection rule, fundamental band,	(0)
	overtones. Applications of vibrational-	
	rotational spectrum in determining force	
	constant and its significance infrared spectra of	
	simple molecules like H ₂ O and CO ₂	/
	1.4 Raman Spectroscopy: Scattering of	
	electromagnetic radiation, Rayleigh scattering,	
	Raman scattering, nature of Raman spectrum	
	(Stoke's lines and anti Stoke's lines), Raman	
	shift, quantum theory of Raman spectrum,	
	comparative study of IR and Raman spectra, rule	
	of mutual exclusion (example of CO ₂ molecule).	
	Number of modes of vibrations for linear and	
	non-linear molecules.	
II	ELECTROCHEMISTRY- III:	(15L)
	CLASSIFICATION OF GALVANIC	
	CELLS	
	2.1 Lewis concept of Activity and Activity	
4, O-,	coefficient, Mean ionic activity and mean ionic	
	activity coefficient of an electrolyte, ionic	
00	strength of a solution, Debye-Huckel limiting	
	law.	
	2.2. Classification of galvanic cells: Chemical	
)-`	Cells and concentration cells, Cells with	
	transference and without transference,	
	Expression for EMF of each type of cell.	
	2.3 Origin of liquid junction potential and its	
	elimination.	

		2.4. Determination of solubility product and	
		solubility of a sparingly soluble salt by Chemical	
		cell and by Concentration cell.	
		2.5 Determination of liquid junction potential.	
	III	COLLIGATIVE PROPERTIES AND	(15L)
		CHEMICAL KINETICS – II	
		3.1 COLLIGATIVE PROPERTIES	(09L)
		3.1.1 Colligative properties, Raoult's	
		law.	
		3.1.2 Relative lowering of vapour	
		pressure.	
		3.1.3 Elevation of boiling point –	
		Thermodynamic derivation for relation	
		between elevation of boiling point and	
		molality.	
		3.1.4 Depression in freezing point-	
		Thermodynamic derivation for relation	
		between depression in freezing point and	
		molality	
	-	3.1.5 Osmosis and Osmotic Pressure –	
		Determination of molar mass form	
(Osmotic pressure.	
		Abnormal molar masses of solute, van't Hoff	
	0	factor (Degree of dissociation and degree of	
		association).	
00		Reverse osmosis.	
		3.2 CHEMICAL KINETICS-II	(06L)
		3.2.1 Recapitulation, Collision theory of	
0-1		reaction rates, applications of collision	
		theory to bimolecular reaction and	
		unimolecular reaction (Lindemann's	0
		theory), Merits and demerits of Collision	
		theory. Steric factor and Probability factor.	
	<u> </u>		

	3.2.2 Activated complex theory of bimolecular	
	reactions. Merits of Activated complex	
	theory.	
	3.2.3 Classification of reactions- slow, fast and	
	ultra fast, study of kinetics of fast reactions	
	by Stop Flow method.	
I	V SURFACE CHEMISTRY, CATALYSIS	(15L)
	AND CHEMISTRY OF COLLOIDS	
	4.1: Surface Chemistry and Catalysis	(08L)
	4.1.1 Adsorption: Physical and Chemical	
	Adsorption, Types of adsorption isotherms,	
	Langmuir's adsorption isotherm. B.E.T.	
	equation for multilayer adsorption,	
	determination of surface area of an adsorbent	
	using B.E.T. equation.	
	4.1.2. Catalysis: Homogeneous and	
	heterogeneous catalysis, catalytic activity and	
	selectivity, promoters, inhibitors, catalyst	
	poisoning and deactivation.	
	4.1.2.1 Acid catalysis and Base catalysis,	
	mechanism and kinetics of acid and base	
	catalysed reactions, effect of pH on acid	
	and base catalysed reactions.	
	4.1.2.2 Enzyme catalysis, mechanism and	
	kinetics of reaction (Michaelis-Menten	
	equation).	
	4.2 COLLOIDS	(07L)
	4.2.1 Introduction to colloidal state of matter.	
	4.2.2 Origin of charge on colloidal particles.	
	Concept of electrical double layer, zeta	
	potential, Helmholtz and Stern model, electro	
	kinetic phenomena: electrophoresis,	

electro-osmo	sis, streaming potential and	
sedimentation	n potential.	
4.2.3	Colloidal electrolytes.	w 0
4.2.4	Donnan Membrane Equilibrium.	11/1/2
4.2.5	Surfactants, Micelle formation,	" Will
applic	eation of surfactants in detergents,	
food i	ndustry and pesticide	
formu	lations.	

Course Code: RUSCHE502
Course Title: CHEMISTRY-II
Academic year 2022-2023
Credits:2.5

Course outcomes:

After st	After studying this course, the learner will be able to:		
CO 1	Identify the elements of symmetry.		
CO 2	Assign point groups to molecules.		
CO 3	Correlate between bond angle and molecular orbitals.		
CO 4	Understand band theory and its application to metals.		
CO 5	Depict structure of solids and their defects.		
CO 6	Compare various aspects of lanthanides and actinides.		
CO 7	Describe properties and application of Uranium.		
CO 8	Distinguish between properties of Xenon and other noble gases.		

RUSCHE502		Credits-2.5	
0-,	Unit	Unit Title	Lectures
7	I	Molecular Symmetry and Chemical Bonding	(15L)
		1.1 Molecular Symmetry	(07L)

	packing density in simple cubic, bcc, fcc and hcp lattices (numerical problems expected). 2.1.3 Stoichiometric point defects in solids: Frenkel and Schottky defects.	
	lattices (numerical problems expected).	
	packing density in simple cubic, bcc, fcc and hcp	
	2.1.2 Closest packing of rigid spheres (hcp, ccp),	
	points, unit cells and lattice constants.	
	2.1.1 Terms involved: crystal lattice, lattice	
	2.1 Structures of Solids	(11L)
II	Solid State Chemistry and Superconductivity	(15L)
	intrinsic and extrinsic semiconductors.	
	of conductors, insulators and semi conductors,	
	Band theory, explanation of electrical properties	•
	1.3 Metallic Bonding	(03L)
	bonding): i) BeH ₂ , ii) H ₂ O iii) CH ₄	
	1.2.2 Other molecules (considering only σ-	
	orbitals).	
	(correlation between bond angle andMolecular	
	1.2.1 Simple triatomic species: H ₃ ⁺ andH ₃	
	Species	(USL)
	1.2 Molecular Orbital Theory for Polyatomic	(05L)
	C _{2h} (trans – trichloroethylene), and (vi) D _{3h} (BCl ₃).	
	(ii) $D_{\alpha h}$ (H ₂),(iii) $C_{2}v$ (H ₂ O), (iv) C_{3v} (NH ₃), (v)	
	using the following pointgroups: (i) $C_{\alpha \nu}$ (HCl),	
	1.1.3 Concept of a Point Group with illustrations	
	operations.	
	1.1.2 Symmetry elements and symmetry	
	in chemistry.	
	1.1.1 Introduction and Importance of symmetry	

	2.2. 1 Discovery of superconductivity.	
	2.2.1 Superconductivity, transition temperature	
	and Meissner effect.	
	2.2.2 Different types of superconductors viz,	
	conventional superconductors, alkali metal	
	fullerides (A ₃ C ₆₀) and high temperature	
	Superconductors.	
	2.2.3 Applications of superconducting materials.	
III	Chemistry of f-block elements	(12L)
	3.1 Introduction: Definition, position in periodic	(01L)
	table and electronic configuration of lanthanides	
	and actinides.	
	3.2 Chemistry of Lanthanides	(11L)
	3.2.1 Lanthanide contraction and its	
	consequences.	
	3.2.2 Oxidation states.	
	3.2.3 Magnetic and spectral properties.	
	3.2.4 Occurrence, extraction and separation of	
	lanthanides by Solvent extraction.	
	3.2.5 Applications of lanthanides.	
	3.3 Chemistry of Actinides	(03L)
	3.3.1 Comparison between lanthanides and	
	actinides.	
	3.3.2 Chemistry of Uranium and with reference	
	to occurrence and isolation (solvent extraction	
	method)	
	3.3.2 Properties and applications of Uranium.	
IV	Non Aqueous Solvents and Chemistry of	(15L)
	Pseudohalogens, Interhalogens and Xenon	
	4.1 Chemistry of Non-aqueous Solvents	(07L)
	Classification of solvents and importance of	
	non-aqueous solvents.	

· · · · · · · · · · · · · · · · · · ·	
4.1.1 Super critical carbon dioxide and ionic	
liquids as solvents	
4.1.2 Characteristics and study of liquid	
ammonia, dinitrogentetraoxide as non-aqueous	
solvents with respect to i) acid base reactions	
and ii) redox reactions.	(\mathcal{A})
4.2 Chemistry of Interhalogens:	(03L)
Introduction, preparation, reactions and	700
structures.	
4.3 Chemistry of pseudohalogens:	(03L)
Introduction, preparation, reaction and	
structures	•
4.4 Chemistry of Xenon:	(02L)
Introduction, Compounds of Xenon: Oxides,	
fluorides, oxyfluorides w.r.t. preparation ,	
properties and bonding.	

Course Code: RUSCHE503
Course Title: CHEMISTRY-III
Academic year 2022-2023

Course Outcomes:

After studying this course, the learner will be able to:			
CO 1	Apply fundamentals of Organic Reaction Mechanism to various reactions.		
CO 2	Compare various conformations of some organic compounds		
CO 3	Apply the concepts of stereochemistry to Organic reactions.		

CO 4	Assign IUPAC names to spiro, bicyclo and heterocyclic compounds.
CO 5	Understand Basics of Polymer Chemistry.
CO 6	Illustrate basics of Green Chemistry to Organic Synthesis.

RUSCHE503		CHEMISTRY-III	Credits-02
	Unit	Unit Title	Lectures
	Ι	Mechanism of Organic Reactions	(15L)
		1.1 Recapitulation: Curved arrows,	
		intermediates, transition states, Electrophilicity	
		vs acidity and nucleophilicity vs basicity.	
		1.2 Elimination Reactions: Mechanisms and	
		stereochemistry.	
		1.2.1 E ₁ and E ₂ Mechanisms, factors influencing	
		the mechanism: nature of substrate, leaving	
		group, structure of base, solvent; Saytzeff and	5
		Hofmann elimination; elimination vs	
		substitution.	
		1.2.2 E ₁ CB mechanism	
		1.2.3 Pyrolytic elimination: Cope, Chugaev,	
		pyrolysis of acetates.	
		1.3 Neighbouring group participation in	
		nucleophilic substitution reactions: partcipation	
		of lone pair of electrons, kinetics and	
		stereochemical outcome.	
		1.4 Acyl nucleophilic substitution (Tetrahedral	
		mechanism): Acid catalysed esterification of	
		carboxylic acids and base promoted hydrolysis	
		of esters (B _{AC} 2).	

	1.5 Mechanism of following rearrangements	
	with examples and stereochemistry wherever	
	applicable.	
	1.5.1 Migration to electron deficient carbon:	
	Pinacol, Benzylic acid.	
	1.5.2 Migration to electron deficient nitrogen:	
	Beckmann, Hofmann.	
	1.5.3 Migration involving a carbanion: Favorski.	
	2.3 Name reactions: Michael, Wittig	
	(mechanism and examples).	
П	Starrage de constitution	(151.)
II	Stereochemistry	(15L)
	2.1 Molecular chirality and element of	
	symmetry: Mirror Plane symmetry, inversion	
	centre, rotation-reflection (alternating) axis.	
	Chirality of compounds without stereogenic	
	centre: cummulenes, spirans and biphenyls.	
	2.2 Conformations of cyclohexane, mono,	
	disubstituted cyclohexanes and their relative	
	stabilities	
	2.3 Stereo selectivity and Stereo specificity: Idea	
	of enantioselectivity (ee) and	
	diastereoselectivity (de). Topicity- enantiotopic	
	and diastereotopic atoms, groups and faces.	
	2.4 Stereochemistry of:	
	2.4.1 Substitution reactions- S_N^1 , S_N^2 , S_N^i	
	(reaction of alcohol with thionyl chloride).	
	2.4.2 Elimination reactions: E ₂ -Base induced	
	dehydrohalogenation of 1-bromo-1,2-	
	diphenylpropane.	
	2.4.3 Addition reactions to olefins- i) catalytic	
	hydrogenation ii) bromination (electrophilic anti	

	addition) (iii) synhydroxylation with OsO4 and	
	KMnO ₄ . iv) epoxidation followed by hydrolysis.	
		. 1
		600
		7
Ш	IUPAC Nomenclature and Chemistry of	(15L)
	Polymers	
	3.1 IUPAC Nomenclature	(06L)
	IUPAC systematic nomenclature of the	
	following classes of compounds (including	
	substituted ones up to two substituents/	
	functional groups):	
	3.1.1 Bicyclic compounds- spiro, fused, and	
	bridged (upto 11carbon atoms) - saturated and	
	unsaturated compounds.	
	3.1.2 Biphenyls.	
	3.1.3 Cummulenesupto three double bonds.	
(0)	3.2 Polymers	(09L)
	3.2.1 Introduction: Review of terms: monomer,	, ,
70	polymer, homopolymer, copolymer,	
	thermoplastics and thermosets.	
	3.2.2 Addition polymers: polyethylene,	
	polypropylene, Teflon, PVC and polystyrene.	
	Uses, recycling	
	oses, recycling	

		3.2.3 Condensation polymers: polyesters,	
		polyamides, polyurethanes, polycarbonates and	
		phenol-formaldehyde resins. Uses	
		•	.10
		3.2.4 Mechanism of free radical addition	
		polymerization.	(0)
		3.2.5 Stereochemistry of polymers: Tacticity.	
		Mechanism and stereochemical control of	
		polymerization using Ziegler-Natta catalyst	?
		3.2.6 Natural and synthetic rubbers:	
		polymerization of isoprene: 1,2- and 1,4-	
		addition (cisand trans), styrene- butadiene	
		copolymer.	
		3.2.7 Additives to polymers: Plasticizers,	
		stabilizers and fillers.	
		3.2.8 Biodegradable polymers: Classification	
		and uses. Polylactic acid- structure, properties	
		and use for packaging and medical purposes.	
		(Note: Identification of monomer in a given	
		polymer and the structure of a polymer from	
		given monomer(s) is expected. Conditions for	
		isomerisation not expected).	
	IV	Synthesis of Organic compounds	(15L)
		4.1 Introduction: Criteria for ideal organic	
		synthesis. Calculation of yields.	
~(0		Concept of selectivity: Linear and convergent	
	ľ	synthesis, Multi-component reactions: Mannich	
(1),		reaction, Hanztsch synthesis.	116
		4.2 Introduction to retrosynthesis: Analysis and	
70		synthesis, technical terms: target molecules	(0)
		(TM), retrosynthetic analysis, FGA, FGI,	
		Disconnection, synthon and reagent.	
		Retrosynthtic analysis of Limonene, Salbutamol	
		and Proparacaine.	
	1		<u>l</u>

4.3 Green chemistry and synthesis:

4.3.1 Introduction to green chemistry: definition, need for and importance of green synthesis, Twelve principles of green chemistry, Atom economy and E-factor calculations and their significance.

4.3.2 Green synthesis in industry:

Green starting materials: D-glucose to adipic acid.

Green reagents: Selective methylation of active methylene using dimethyl carbonate.

Green solvent: Supercritical CO₂, deep eutectic solvents (DES).

Green catalyst: Heterogeneous catalysis using tellurium, biocatalysis.

Green synthesis of paracetamol.

4.4 Other methods of organic synthesis

Microwave assisted organic synthesis (Using organic solvents and in solid state).

Ultrasound in organic synthesis, Phase transfer catalysis. Polymer supported synthesis: Merrifield polypeptide synthesis.

Course Code: RUSCHE504
Course Title: CHEMISTRY-IV
Academic year 2022-2023

Course Outcomes:

After co	mpleting this course, the learner will be able to:
CO 1	Elaborate on the need and importance of sampling and the various methods used
	for sampling of solid, liquids and gases.
CO 2	Evaluate the analytical data in terms of statistics.
CO 3	Interpret the sources of random errors and their effect on analytical results.
CO 4	State the significance of confidence limits in the error analysis.
CO 5	Specify the standard deviation of calculated results.
CO 6	Explain the Q-test for rejection of data.
CO 7	Outline a procedure for the application of null hypothesis to the data.
CO 8	Discuss the importance of graphical representation of data.
CO 9	Describe the different methods used for locating endpoints in precipitation
	titrations.
CO 10	Classify the different types of solvents used for non-aqueous titrations with respect
	to their acid base properties.
CO 11	Illustrate the effect of dielectric constant and nature of solvent on solute behaviour
	in non aqueous titrations.
CO 12	Explain the basic principle involved in AAS, AES, fluorescence,
	phosphorescence, turbidimetry and nephelometry.
CO 13	Describe the function of different components of AAS,flame photometer
	,Fluorimeter, Phosphorimeter, Turbidimeter and nephelometer.
CO 14	List the factors affecting fluorescence and phosphorescence and also the factors
	affecting scattering of light in turbidimetry and nephelometry.
CO 15	Relate fluorescence intensity with concentration

RUSCHE504	CHEMISTRY-IV		Credits-2.5
	Unit	Unit Title	Lectures

Sampling and Treatment of Analytical Data	(15L)
1.1 Sampling:	(07L)
1.1.1 Sampling, need and importance, terms	
involved, sampling techniques, non-random and	
random sampling, sequential sampling,	
1.1.2 Sampling of gases, precautions, methods	
used, pressure and temperature sampling	
1.1.3 Sampling of liquids, sample thief,	
homogeneous and heterogeneous liquids,	
stationary and flowing liquids,	
1.1.4 Sampling of solids, bulk ratio, size to	
weight ratio,	
1.1.5 Sampling and equipment for sampling of	
compact solids, powdered solids,	
flowing solids and particulate solids.	
1.1.6 Methods of reduction of the size of the	
sample	
1.1.7 Preservation of sample, dissolution of the	
samples, use of fluxes	
1.2 Treatment of analytical data	(08L)
1.2.1 Collection and processing of data, concept	
of classes, and class frequencies, histogram and	
frequency polygon.	. C
1.2.3 Distribution of random errors, Gaussian	
distribution curve and its salient features.	
1.24 Concept of confidence limits and	
confidence interval, computation of both by	
using range, student's t and population standard	
deviation.	
1.2.5 Criterion for the rejection of a result,	
empirical methods like 2.5 d and 4.0 d rule,	
statistical approach.	
	1.1.1 Sampling: 1.1.1 Sampling, need and importance, terms involved, sampling techniques, non-random and random sampling, sequential sampling, 1.1.2 Sampling of gases, precautions, methods used, pressure and temperature sampling 1.1.3 Sampling of liquids, sample thief, homogeneous and heterogeneous liquids, stationary and flowing liquids, 1.1.4 Sampling of solids, bulk ratio, size to weight ratio, 1.1.5 Sampling and equipment for sampling of compact solids, powdered solids, flowing solids and particulate solids. 1.1.6 Methods of reduction of the size of the sample 1.1.7 Preservation of sample, dissolution of the samples, use of fluxes 1.2 Treatment of analytical data 1.2.1 Collection and processing of data, concept of classes, and class frequencies, histogram and frequency polygon. 1.2.3 Distribution of random errors, Gaussian distribution curve and its salient features. 1.24 Concept of confidence limits and confidence interval, computation of both by using range, student's t and population standard deviation. 1.2.5 Criterion for the rejection of a result, empirical methods like 2.5 d and 4.0 d rule,

	1.2.6 Testing for significance, null hypothesis,	
	variance ratio test.	
	1.2.7 Graphical presentation of results, scatter	
	diagram, regression analysis, method of	
	averages, least square method for line of the	
	type $y = mx + c$ and $y = mx$	
	1.2.8 Significant figures and their use in data	
	treatment.	
II	Titrimetric analysis	(15L)
	2.1 Redox Titrations	(04L)
	2.1.1 General introduction, theory of redox	
	indicators,	
	2.1.2 criterion for choosing an indicator for a	.10
	redox titration,	
	2.1.3 Construction of the titration curves in the	100
	case of	
	i) Fe(II) vsCe(IV) ii) Fe(II) vs Cr ₂ O ₇ ²	
	2.1.4 Use of diphenyl amine and ferroin as redox	
	indicator.	
	2.2 Precipitation titrations	(04L)
	2.2.1 Basic principles of precipitation titrations	
	2.2.2 Argentimetric titrations, construction of	
	the titration curve for the titration of sodium	
	chloride with silver nitrate.	
	2.2.3 Mohr's method	
	2.2.4 Volhard's method	
	2.2.5 Adsorption indicators, examples and uses.	
	2.3 Complexometric titrations	(04L)
	2.3.1 General introduction of complexometric	
	titrations	
	2.3.2 EDTA titrations	

	2.3.2.1 EDTA as a chelating agent, structure of	
	the chelate, characteristic features of the metal	
	EDTA complexes.	
	2.3.2.2 Stability constant of the EDTA	
	complexes, conditional stability constants,	
	construction of the titration curve in the titration	
	of a metal ion with EDTA with the example of	
	Ca^{2+} .	
	2.3.2.3 Types of EDTA titrations.	
	2.3.2.4 Methods of improving the selectivity of	
	EDTA titrations.	
	2.3.2.5 Metallochromic indicators	
	2.4 Non-aqueous titrations	(03L)
	2.4.1 Need for non-aqueous titrations,	
	2.4.2 Types of solvents, choice of the solvent for	
	the non-aqueous titrations,	
	2.4.3 Acid base titrations in non-aqueous media,	
	2.4.4 Use of glacial acetic acid as the solvent in	
	non-aqueous titrations, non-aqueous	
	titrations with a visual indicator using an	116
	instrument	
	2.4.5 Advantages and limitations.	(0)
III	Optical Methods	(15L)
	3.1 Atomic Absorption Spectroscopy (AAS)	(05L)
	3.1.1 Atomic energy level diagram,	
	characteristic features of atomic spectra.	
	3.1.2 Basic principles of Atomic Absorption	
	Spectroscopy, steps involved in the process of	
	atomization.	
	3.1.3 Instrumentation: Components-hollow	
	cathode lamp, chopper, types of atomizers: (i)	
	premix burner (ii) total consumption burner (iii)	
	electrothermal atomizers.	

	3.1.4 Qualitative and quantitative analysis,	
	calibration curve and standard addition method.	
	3.1.5 Applications of Atomic Absorption	
	Spectroscopy.	
	3.2 Atomic Emission Methods	(04L)
	3.2.1 Flame emission: basic principles of flame	
	photometry	. \ (
	3.2.2 Instrumentation, flames and burners,	
	detectors,	100
	3.2.3 Qualitative and quantitative analysis,	
	calibration curve, standard addition and internal	
	standard method	7
	3.2.4 Applications of flame photometry.	
	3.2.5 Comparison of atomic absorption and	
	atomic emission methods	
	3.3 Fluorescence and phosphorescence	(03L)
	spectroscopy	
	3.3.1 Basic principles of fluorescence and	
	phosphorescence, Jablonski diagram and its	
	utility, factors affecting fluorescence and	
	phosphorescence	
	3.3.2 Relation between fluorescence intensity	
	and concentration	
	3.3.3 Instrumentation of fluorimetry and	
	phosphorimetry	
	3.3.4 Applications of fluorimetry and	
	phosphorimetry	
4 O-	3.3.5 Comparison of fluorimetry and	
	phosphorimetry	
VQ.	3.3.6 Comparison of absorption and fluorimetric	
	techniques.	

		3.4 Nephelometry and turbidimetry	(03L)
		3.4.1 Scattering of radiation, basic principles of	
		nephelometry and turbidimetry,	
		3.4.2 Factors affecting scattering of radiation,	
		particle size, wavelength, concentration,	
		refractive index.	
		3.4.3 Instrumentation in nephelometry and	
		turbidimetry.	
		3.4.4 Applications of both techniques.	
	IV	Miscellaneous Methods	(15L)
		4.1 Thermal Methods	(04L)
		4.1.1 Introduction to thermal methods,	
		classification of thermal methods,	(
		4.1.2 Thermo gravimetric analysis, thermogram,	10
		factors affecting the thermogravimetric curve	1/6
		4.1.3 Instrumentation, components, thermo	
		balance, furnace, sample holder, recorder,	$(\ \ \)$
		measurement of temperature	
		4.1.4 Applications, limitations.	
		4.2 Radioanalytical techniques	(04L)
		4.2.1 Neutron Activation Analysis (NAA)	
		4.2.1.1 Basic principles, characteristic features,	
		operational procedure	
		4.2.1.2 Advantages, limitations and application	
		of NAA.	
		4.2.2 Isotope Dilution Analysis (IDA)	
		4.2.2.1 Basic principles, operational procedure	
		4.2.2.2 Applications, advantages and limitations	
		of IDA	
		4.3 Mass spectrometry	(04L)
		4.3.1 Basic principles	
		4.3.2 Instrumentation, components, sources,	
		analysers, detectors.	
•		<u> </u>	

4.4 Method validation	(03L)
4.4.1 Need and significance of method	
validation	
4.4.2 Parameters chosen for method validation	
4.4.3 Procedure for method validation	

Semester V Practicals

RUSCHEP501	Credits-03
	CHEMISTRY-I
	Physical Chemistry
	1. To study the effect of ionic strength on the rate of reaction between K ₂ S ₂ O ₈ and
	KI using KCl.
	2. To study the rate of adsorption of acetic acid on activated charcoal.
	3. To study the relative strength of acetic acid and monochloroacetic acid.
	4. To determine pK ₁ and pK ₂ of phosphoric acid by pH-metry.
	5. To determine the amount of weak dibasic by conductometric titration.
	6. To determine the standard reduction potential of Cu ²⁺ /Cu electrode at room
	temperature.
	CHEMISTRY-II
	Inorganic preparations
	1. Potassium diaquobis- (oxalate)cuprate(II)K2[Cu(C2O4)2.(H2O]
	2. Bis(ethylenediamine)iron(II)sulphate[C2H4(NH2)2FeSO4.4H2O].
	Volumetric analysis
	1. Determination of magnesium from the supplied commercial sample of Milk of
	magnesia tablet
	2. Estimation of Nickel(II) complexometrically using murexide indicator
	(Learners are expected to standardize supplied EDTA solution using ZnSO4.7H20)

	3. Estimation of copper(II) complexometrically using fast sulphon black-F indicator			
DATECATEDAG	(Learners are expected to standardize supplied EDTA solution using ZnSO4.7H20)			
RUSCHEP502	CHEMISTRY-III			
	I) Binary Mixture Separation: Separation of mixture containing (VL + NVL) &			
	(VL+S) components.			
	1. Minimum Six mixtures to be completed by the learners.			
	2. Components of the liq-liq mixture should include volatile liquids like acetone,			
	methylacetate, ethylacetate, isopropylalcohol, methyl alcohol, ethyl alcohol,			
	chloroform and non- volatile liquids like chlorobenzene, bromobenzene, aniline,			
	N,N-dimethylaniline, acetophenone, nitrobenzene, ethyl benzoate.			
	3. Components of the liq- solid mixture should include volatile liquids like acetone,			
	methylacetate, ethylacetate, ethyl alcohol, methyl alcohol, isopropylalcohol,			
	chloroform and solids such as water insoluble acids, phenols, bases, neutral.			
	4. A sample of the mixture one ml to be given to the learnerfor detection of the			
	physical type of the mixture.			
	5. After correct determination of physical type, separation of the binary mixture to be			
	carried out by distillation method using microscale technique. 6. After separation into component A and component B, the physical constants and the yield of the separated components is to be determined. II) Organic Preparations:			
	1. Acetylation of hydroquinone.			
	2. Bromination of acetanilide.			
	3. Hydrolysis of ethyl benzoate.			
	4. Nitration of acetanilide.			
	5. Microwave assisted synthesis of Schiff's base from aniline and p-			
	anisaldehyde.			
1	6. Microwave assisted synthesis of coumarin by Knoevenagel reaction			
from salicylaldehyde andethylacetoacetate in presence of a				
	CHEMISTRY-IV:			
	1. Determination of the amount of fluoride in the given solution			
10	colorimetrically.			

- 2. Estimation of Vitamin C content of a given tablet by titration with sodium hydroxide pH metrically
- 3. To determine potassium content of a commercial salt sample by flame photometry.
- 4. To determine the amount of chloride in the given sample using Mohr's method.
- **5.** To determine the amount of persulphate in the given sample by back titration with standard Fe(II) ammonium sulphate solution.
- **6.** To estimate Fe(II) in a tablet using diphenylamine as an indicator.

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment - 40% of total marks:

(40 marks)

Sr No	Evaluation type	Marks
1	One Assignment	10
2	One class Test (multiple choice questions / objective)	20
3	Active participation in routine class instructional deliveries (seminars//presentation)	05
4	Overall conduct, participation in co-curricular activities of the department.	05

B) External examination - 60 %

Semester End Theory Assessment - 60%

60 marks

These examinations shall be of two hours duration.

There shall be Four questions each of 15 marks. On each unit there will be one question.

All questions shall be compulsory with internal choice within the questions.

Theory question paper pattern is as follows:-

Questions	Options	Marks	Questions on
Q.1)A)	Any 3 out of 5	12	Unit I
Q.1)B)	Any 1 out of 2	03	Oilit I
Q.2)A)	Any 3 out of 5	12	Unit II
Q.2)B)	Any 1 out of 2	03	Omit II
Q.3)A)	Any 3 out of 5	12	Unit III
Q.3)B)	Any 1 out of 2	03	Ollit III
Q.4)A)	Any 3 out of 5	12	Unit IV
Q.4)B)	Any 1 out of 2	03	Omit I v

Practical Examination Pattern:

	RUSCHEP501		RUSC	HEP502
	Paper I	Paper II	Paper III	Paper IV
Journal	05	05	05	05
Tests	10	10	10	10
Active Participation	05	05	05	05
Total	20	20	20	20
(B) External (Seme	ster end prac	tical examinati	on):-	
Laboratory work	25	25	25	25
Viva	05	05	05	05
Total	30	30	30	30
Grand Total		100		.00

PRACTICAL JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal, Certificate from Head/ Co-ordinator should be submitted, failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

Course	e 501	502			Grand Total		
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical	20	30	50	20	30	50	100
			1			1	-
Course	~ \	503			504		
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical	20	30	50	20	30	50	100
	7,	1	1	1		Total Ma	rks : 600)

SEMESTER VI Course Code: RUSCHE601 Course Title: CHEMISTRY-I Academic year 2022-2023

Course Outcomes:

After st	After studying this course, the learner will be able to:				
CO 1	Understand the basic principles of Nuclear Magnetic Resonance spectroscopy				
CO 2	Classify polymers based on various parameters				
CO 3	Determine overvoltage and decomposition potential				
CO 4	Illustrate the use of X-rays in the study of solid state				
CO 5	Differentiate between nuclear fission and nuclear fusion processes				
CO 6	Understand the basic operations used in Quantum Chemistry.				

RUSCHE601		CHEMISTRY-I	Credits-2.5
	Unit	Unit Title	Lectures
	I	Nuclear Magnetic Resonance Spectroscopy and	(15L)
		Polymer Chemistry	
		1.1: Nuclear Magnetic Resonance Spectroscopy	(08L)
		1.1.1. Nuclear spin, magnetic moment, criteria for	
		nuclei to be NMR active, energy levels,Larmor	
		precession, Relaxation processes in NMR (
		spin-spin relaxation and spin-lattice relaxation).	
		1.1.2. NMR Spectrometer, chemical shift, shielding	
		and deshielding ofprotons, low resolution NMR	
		spectrum, high resolution NMR spectrum.	
		1.2 Polymers	(07L)
		1.2.1 Classification of polymers based on 1)	
		source, 2) structure, 3)thermal response, 4)	
		Physical properties	
		1.2.2 Molar mass of polymers: 1) Number average	
		molar mass, 2) Weight average molar mass, 3)	
		Viscosity average molar mass, monodispersity,	
		polydispersity, polydisperity index	

	1.2.3 Methods of determining molar mass of	
	polymers: 1) Ultracentrifugation method 2)	
	Viscosity method of Viscosity average molar	
	mass, Mark-Houwink equation.	
II	Electrochemistry – IV And Crystalline State	(15L)
	2.1electrochemistry-IV:Decomposition	(08L)
	Potential, Overvoltage And Electroplating	
	2.1.1 Polarization, concentration polarization and	
	its elimination.	
	2.1.2 Decomposition potential and its	
	experimental determination, factors affecting	
	decomposition potential.	
	2.1.3 Over voltage and its experimental	
	determination, factors affecting overvoltage.	
	2.1.4 Tafel's equation for hydrogen overvoltage	
	2.1.5 Electroplating – Objectives and process	
	2.2 Crystalline State	(07L)
	2.2.1. Recapitulation: Laws of Crystallography	
	2.2.2. Characteristics of simple cubic, face	
	centered and body centered cubic system,	
	inter planar distance in cubic lattices.	
	2.2.3 Use of X- rays in the study of crystal	
	structure, Bragg's equation, X- ray	
	diffraction method of studying crystal	
	lattices, structure of NaCl, Determination of	
	Avogadro number.	
III	Nuclear Chemistry	(15L)
	3.1 Structure of Nucleus.	
	3.2 Nuclear disintegration/ Nuclear radioactivity,	
l l	3/	
	Types of nuclear radiations (α -ray, β -ray and γ -	(

IV	Basics of Quantum Mechanics	(15L)
	dating, isotopic labelling.	
	3.13: Applications of Radiochemistry: Carbon	
	GM Counter and Scintillation Detector	
	3.12 Detection and measurement of radioactivity –	
	cycle	
	of nuclear fusion: 1) Carbon cycle 2) Proton	
	3.11 Nuclear Fusion - Characteristics; Mechanism	
	2)Breeder Reactor.	
	Types of Nuclear Reactors: 1) Power Reactor	
	3.10 Basic components of Nuclear Reactors,	
	fertile material to fissile material.	
	3.9 Fertile and fissile materials, conversion of	
	Factor 2) Critical Mass	
	affecting Nuclear Fission: 1) Multiplication	
	features of nuclear fission process, Factors	
	3.8 Nuclear Fission process and its Characteristics	
	and Threshold energy.	
	3.7 Energy involved in Nuclear reactions: Q-value	
	electrons 3) K-electron capture.	
	emission of positrons 2) emission of	
	3.6 Mode of decay of radioactive elements: 1)	
	radioactive equilibrium.	
	Transient; Difference between chemical and	
	3.5 Radioactive Equilibrium- 1) Secular 2)	
	life of nuclear reactions.	
	expression of decay constant and its units, half	
	3.4 Kinetics of radioactivity: units of radioactivity,	
	different types of projectiles.	
	radioactivity, Nuclear transmutation with	
	3.3 Nuclear transmutation and Artificial	

- 4.1 Classical mechanics: limitations of classical mechanics: 1) Black body radiation 2) photoelectric effect 3) Compton Effect.
- 4.2 Introduction to quantum mechanics, Planck's theory of quantization, wave particle duality, de-Broglie equation, Heisenberg's uncertainty principle.
- 4.3 The Schrodinger wave equation
- 4.3 Postulates of quantum mechanics 1) State function and its significance 2) Concept of operators: definition, addition, subtraction and multiplication of operators, commutative and non-commutative operators, linear operator, Hermitian operator 3) Eigen function and eigen value, eigen value equation. 4) Wave mechanical operator for evaluating various classical properties. 5) Expectation value.
- 4.4 Solution of the Schrodinger wave equation for a simple system: Particle in one dimensional box.

Course Code: RUSCHE602 <u>Course Title: CHEMISTRY-II</u> Academic year 2022-2023

Course outcomes:

After st	udying this course, the learner will be able to:
CO 1	Compare and contrast between Crystal Field Theory and Valence Bond Theory

CO 2	Calculate CFSE of complexes, and thus predict stability
CO 3	Apply MOT to octahedral complexes
CO 4	Carry out Spectral Analysis of Inorganic Compound: determine terms, term
	symbols and Orgel Diagrams
CO 5	Study Thermodynamic and Kinetic Stability of Complexes.
CO 6	Differentiate between complexes based on their lability.
CO 7	Describe general characteristics of Organometallic Compounds
CO 8	Study Nanomaterials with respect to their synthesis and properties

RUSCHE602		CHEMISTRY-II	Credits-2.5
	Unit	Unit Title	Lectures
	I	Coordination Chemistry	
		1.1 Theories of metal-ligand bond	(11L)
		1.1.1 Recapitulation of VBT and its limitations.	
		1.1.2 Crystal field theory and effect of crystal	
		field on central metal valence orbitals in	. 0
4	0-	various geometries,	
		1.1.3 Splitting of d orbitals in octahedral,	
100		square planar and tetrahedral crystal fields	
		1.1.4 Distortions from the octahedral geometry)
		:	
0		i) Effect of ligand field ii) Jahn-Teller	
		distortions	
		1.1.5 Crystal field splitting parameter, its	
		calculation and factors affecting it in	
		octahedral complexes, Spectrochemical series.	
		1.1.6 Crystal field stabilization energy (CFSE),	
		calculation of CFSE, for octahedral and	
		tetrahedral complexes with d1 to d10 metal ion	
		configurations.	

	1.1.7 Consequences of crystal field splitting on	
	various properties such as ionic radii,	
	hydration, energy, lattice energy, enthalpies of	
	formation, colour and magnetic properties.	
	1.1.8 Limitations of CFT	
	1.1.9: Evidences for covalence in metal	
	complexes: i) intensities of d-d transitions, ii)	
	ESR spectrum of [IrCl ₆] ²⁻ iii) Nephelauxetic	
	effect	
	1.2 Molecular Orbital Theory (MOT) of	(04L)
	Coordination Complexes:	
	Application to octahedral complexes in case of	
	(i) [Ti(H2O)]3+, (ii) Fluoro complexes of	
	Fe(II) and Fe (III) and (iii) Cyano complexes	
	of Fe(II) and Fe (III).	
TT	Droporties of Co. andination Companyed	(151)
II	Properties of Co-ordination Compounds	(15L)
11	2.1 Electronic Spectra	(07L)
11		` ,
11	2.1 Electronic Spectra	` ,
П	2.1 Electronic Spectra 2.1.1 Origin of electronic spectra	` ,
П	 2.1 Electronic Spectra 2.1.1 Origin of electronic spectra 2.1.2 Types of electronic transitions in 	` ,
П	 2.1 Electronic Spectra 2.1.1 Origin of electronic spectra 2.1.2 Types of electronic transitions in coordination compounds: intra- ligand, charge 	` ,
П	 2.1 Electronic Spectra 2.1.1 Origin of electronic spectra 2.1.2 Types of electronic transitions in coordination compounds: intra- ligand, charge transfer and intra-metal transitions. 	` ,
П	 2.1 Electronic Spectra 2.1.1 Origin of electronic spectra 2.1.2 Types of electronic transitions in coordination compounds: intra- ligand, charge transfer and intra-metal transitions. 2.1.3 Electronic configuration and electronic 	, ,
II	 2.1 Electronic Spectra 2.1.1 Origin of electronic spectra 2.1.2 Types of electronic transitions in coordination compounds: intra- ligand, charge transfer and intra-metal transitions. 2.1.3 Electronic configuration and electronic micro states, Term symbols, coupling of spin 	` ,
II	 2.1 Electronic Spectra 2.1.1 Origin of electronic spectra 2.1.2 Types of electronic transitions in coordination compounds: intra- ligand, charge transfer and intra-metal transitions. 2.1.3 Electronic configuration and electronic micro states, Term symbols, coupling of spin momenta (Ms),orbital momenta (Ml)and spin- 	, ,
	 2.1 Electronic Spectra 2.1.1 Origin of electronic spectra 2.1.2 Types of electronic transitions in coordination compounds: intra- ligand, charge transfer and intra-metal transitions. 2.1.3 Electronic configuration and electronic micro states, Term symbols, coupling of spin momenta (Ms),orbital momenta (Ml)and spin-orbit coupling or Russell-Saunders coupling. 	` ,
	 2.1 Electronic Spectra 2.1.1 Origin of electronic spectra 2.1.2 Types of electronic transitions in coordination compounds: intra- ligand, charge transfer and intra-metal transitions. 2.1.3 Electronic configuration and electronic micro states, Term symbols, coupling of spin momenta (Ms),orbital momenta (Ml)and spin-orbit coupling or Russell-Saunders coupling. 2.1.4 Determination of Terms for p² and 	, ,
	 2.1 Electronic Spectra 2.1.1 Origin of electronic spectra 2.1.2 Types of electronic transitions in coordination compounds: intra- ligand, charge transfer and intra-metal transitions. 2.1.3 Electronic configuration and electronic micro states, Term symbols, coupling of spin momenta (Ms),orbital momenta (Ml)and spin-orbit coupling or Russell-Saunders coupling. 2.1.4 Determination of Terms for p² and d²electronic configuration 	, ,
	 2.1 Electronic Spectra 2.1.1 Origin of electronic spectra 2.1.2 Types of electronic transitions in coordination compounds: intra- ligand, charge transfer and intra-metal transitions. 2.1.3 Electronic configuration and electronic micro states, Term symbols, coupling of spin momenta (Ms),orbital momenta (Ml)and spin-orbit coupling or Russell-Saunders coupling. 2.1.4 Determination of Terms for p² and d²electronic configuration 2.1.5 Terms and micro-states for transition 	, ,
	 2.1 Electronic Spectra 2.1.1 Origin of electronic spectra 2.1.2 Types of electronic transitions in coordination compounds: intra- ligand, charge transfer and intra-metal transitions. 2.1.3 Electronic configuration and electronic micro states, Term symbols, coupling of spin momenta (Ms),orbital momenta (Ml)and spin-orbit coupling or Russell-Saunders coupling. 2.1.4 Determination of Terms for p² and d²electronic configuration 2.1.5 Terms and micro-states for transition metal atoms/ions. 	` ,

	2.1.7 Selection rules for electronic transitions :	
	Spin and orbital forbidden transitions (Laporte	
	selection rules)	
		(0.17.)
	2.2 Stability of Metal Complexes	(04L)
	2.2.1 Thermodynamic stability and kinetic	
	stability of complexes with examples.	
	2.2.2 Stability constants: Stepwise and overall	
	constants and their interrelationship.	
	2.2.3 Factors affecting thermodynamic	
	stability (Factors related to nature of central	
	metal atom, nature of ligand, chelate effect to	
	be discussed)	
	2.3 : Reactivity of Metal Complexes :	(04L)
	2.3.1 Comparison between inorganic and	
	organic reactions	
	2.3. 2 Types of reactions in metal complexes	
	2.3.3 Inert and labile complexes: Correlation	
	between electronic configuration and lability	
	of Complexes	
	2.3.4 Ligand substitution reactions:	
	Associative and Dissociative mechanisms	
	2.3.5 Acid hydrolysis, base hydrolysis and	
	anation reaction	
III	Organometallic Chemistry	(15L)
	3.1 Organometallic Compounds of main	(09L)
	group metals	
	3.1.1 General characteristics of various types	
	of Organometallic compounds, viz., ionic,	
	sigma bonded and electron deficient	5
	compounds)
	3.1.2 General synthetic methods: (i) Oxidative	
	addition (ii) Metal-Metal exchange	
İ		

(04L)
(02L)
(15L)
(08L)
(07L)

Course Code: RUSCHE603 <u>Course Title: CHEMISTRY-III</u> Academic year 2022-2023.

Course Outcomes:

After st	tudying this course, the learner will be able to:
CO 1	Classify carbohydrates.
CO 2	Study reactions shown by Glucose
CO 3	Illustrate general applications of various catalysts and Reagents
CO 4	Understand basic principles of Photochemistry
CO 5	Know basics of Natural Product chemistry- Including Amino acids, nucleic acids etc
CO 6	Apply Spectral techniques to Structure Determination

RUSCHE603		CHEMISTRY-III	Credits-2.5
	Unit	Unit Title	Lectures
	I	Chemistry of Carbohydrates and Catalysts	(15L)
	5	and Reagents	
~(0-)		1.1 Chemistry of Carbohydrates	(09L)
		1.1.1 Introduction: Classification, reducing and	(0)
		non-reducing sugars, DL notation.	
		1.1.2 Structures of monosaccharides: Fischer	
0-		projection (4-6 carbon monosaccharides) and	
		Haworth formula (Furanose and pyranose forms	
		of pentoses and hexoses). Interconversion: open	
		and Haworth forms of monosaccharides with 5	

,	
and 6 carbons. Chair conformation with	
stereochemistry of D-glucose. Stability of chair	
forms of D- glucose.	
1.1.3 Stereoisomers of D-glucose: Enantiomers	
and diastereomers, anomers and epimers.	
1.1.4 Mutarotation in D-glucose with	
mechanism.	
1.1.5 Chain lengthening and shortening	
reactions: Modified Kiliani-Fischer synthesis	
(D- arabinose to D-glucose and D-mannose),	
Wohl method (D-glucose to D-arabinose).	
1.1.6 Reactions of D-glucose and D-fructose: (a)	
osazone formation (b) reduction- H ₂ /Ni, NaBH ₄	
c) oxidation: bromine water, HNO ₃ , HIO _{4 d})	
acetylation e) methylation (d and e with cyclic	
pyranose forms).	
1.1.7 Glycosides: general structure, formation of	
alkyl glycosides and anomeric effect.	
1.1.8 Disaccharides: Structures of sucrose and	
maltose (cyclic forms: Haworth/chair).	. 0
1.2 Catalysts and Reagents :	(06L)
Study of the following catalysts and reagents	
with respect to functional group transformations	(
and selectivity (no mechanism)	
1.2.1 Catalysts: Catalysts for hydrogenation:	
Raney Ni, Pt and PtO ₂ : C=C, CN, NO ₂ , aromatic	
ring; Pd/C: C=C, COCl→ CHO (Rosenmund);	
Lindlar catalyst: alkynes; Wilkinson's catalyst:	
olefins.	
1.2.2 Reagents : (a) LiAlH4 and Red-Al:	
reduction of CO, COOR, CN, and NO ₂ . (b)	
NaBH ₄ : reduction of CO (c) SeO ₂ :	
hydroxylation of allylic and benzylic positions,	

	oxidation of CH ₂ to CO (d) m-CPBA	
	epoxidation of C=C	
	(e) NBS: allylic and benzylicbromination.	
II	Chemistry of Amino Acids, Proteins and	(15L)
	Nucleic Acids and Photochemistry	, ,
	2.1 Chemistry of Amino acids, Proteins and	(08L)
	Nucleic acids:	
	2.1.1 α-Amino acids: General structure,	
	configuration, essential (valine, leucine,	
	phenylalanine), neutral (glycine, alanine), acidic	
	(glutamic acid) and basic (lysine) amino acids	
	(systematic names with abbreviations). pH	
	dependency of ionic structure and isoelectric	
	point.	
	2.1.2 Polypeptides and Proteins: Nature of	
	Peptide bond. Nomenclature and representation	d
	of peptides (di and tripeptides)	
	2.1.3 Proteins: general idea of primary,	116
	secondary, tertiary and quartenary structures.	
	2.1.4 Nucleic acids: Controlled hydrolysis of	
	nucleic acids. Sugars and bases in nucleic acids.	
	Structures of nucleosides and nucleotides in	
	DNA and RNA. Structure of nucleic acids (DNA	
	and RNA including base pairing).	
	2.2 Photochemistry:	(07L)
	2.2.1 Introduction: Difference between thermal	
	and photochemical reactions. Jablonski diagram,	
	singlet and triple states, allowed and forbidden	
	transitions, fate of excited molecules,	
	photosensitization.	
	2.2.2 Photochemical reactions of olefins:	
	photoisomerisation, photochemical	
	rearrangement of 1,4-dienes (di π methane)	
	singlet and triple states, allowed and forbidden transitions, fate of excited molecules, photosensitization. 2.2.2 Photochemical reactions of olefins: photoisomerisation, photochemical	

		2.2.3 Photochemistry of carbonyl compounds:	
		Norrish I, Norrish II cleavages, photoreduction	
		(e.g. benzophenone to benzpinacol).	
	TIT	Construction of the William of the	(151)
	III	Spectroscopy-I (UV-Visible, IR and ¹ H	(15L)
		NMR)	
		3.1 Introduction: Electromagnetic spectrum,	
		units of wavelength and frequency.	
		3.2 UV- Visible spectroscopy: Basic theory,	. (
		solvents, nature of UV-VIS spectrum, concept of	
		Chromophore, auxochrome,bathochromic shift,	
		Hypsochromic shift, hyperchromic and	
		hypochromic effects, chromophore-	
		chromophore and chromophore -auxochrome	
		interactions. Calculation of absorption maxima	
		by Woodward-Fieser Rule for conjugated	
		polyenes. Applications of UV-Visible	
		spectroscopy.	
		3.3 IR Spectroscopy: Basic theory, selection	
		rule, nature of IR spectrum, characteristic	
		vibrational frequencies of functional groups,	
		fingerprint region. Applications IR	
		Spectroscopy.	
		1.2 ¹ H NMR Spectroscopy: Basic theory of	
		¹ H NMR, nature of ¹ H NMR spectrum,	
		chemical shift (∂ unit), standard for ¹H	
		NMR, solvents used. Factors affecting	
		chemical shift: inductive effect and	
		anisotropic effect (with reference to	
. 7		C=C, C=C, C=O and benzene ring).	
		Spin- spin coupling and coupling	
~0.		constant. Application of deuterium	

IV Spectroscopy-II and Natural Products 4.1 Spectroscopy-II (08L) 4.1.1 Mass Spectrometry: Basic theory. Nature of mass spectrum. General rules of fragmentation. Importance of molecular ion peak, isotopic peaks, base peak, Nitrogen rule. Fragmentation of alkanes and aliphatic carbonyl compounds including Mclafferty rearrangement. 4.1.2 Spectral characteristics of following classes of organic compounds, including benzene and monosubstituted benzenes with respect to UV-VIS, IR, ¹H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple
4.1 Spectroscopy-II 4.1.1 Mass Spectrometry: Basic theory. Nature of mass spectrum. General rules of fragmentation. Importance of molecular ion peak, isotopic peaks, base peak, Nitrogen rule. Fragmentation of alkanes and aliphatic carbonyl compounds including Mclafferty rearrangement. 4.1.2 Spectral characteristics of following classes of organic compounds, including benzene and monosubstituted benzenes with respect to UV-VIS, IR, ¹ H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple
4.1 Spectroscopy-II 4.1.1 Mass Spectrometry: Basic theory. Nature of mass spectrum. General rules of fragmentation. Importance of molecular ion peak, isotopic peaks, base peak, Nitrogen rule. Fragmentation of alkanes and aliphatic carbonyl compounds including Mclafferty rearrangement. 4.1.2 Spectral characteristics of following classes of organic compounds, including benzene and monosubstituted benzenes with respect to UV-VIS, IR, ¹ H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple
4.1.1 Mass Spectrometry: Basic theory. Nature of mass spectrum. General rules of fragmentation. Importance of molecular ion peak, isotopic peaks, base peak, Nitrogen rule. Fragmentation of alkanes and aliphatic carbonyl compounds including Mclafferty rearrangement. 4.1.2 Spectral characteristics of following classes of organic compounds, including benzene and monosubstituted benzenes with respect to UV-VIS, IR, ¹ H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple
of mass spectrum. General rules of fragmentation. Importance of molecular ion peak, isotopic peaks, base peak, Nitrogen rule. Fragmentation of alkanes and aliphatic carbonyl compounds including Mclafferty rearrangement. 4.1.2 Spectral characteristics of following classes of organic compounds, including benzene and monosubstituted benzenes with respect to UV-VIS, IR, ¹ H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple
fragmentation. Importance of molecular ion peak, isotopic peaks, base peak, Nitrogen rule. Fragmentation of alkanes and aliphatic carbonyl compounds including Mclafferty rearrangement. 4.1.2 Spectral characteristics of following classes of organic compounds, including benzene and monosubstituted benzenes with respect to UV-VIS, IR, ¹ H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple
peak, isotopic peaks, base peak, Nitrogen rule. Fragmentation of alkanes and aliphatic carbonyl compounds including Mclafferty rearrangement. 4.1.2 Spectral characteristics of following classes of organic compounds, including benzene and monosubstituted benzenes with respect to UV-VIS, IR, ¹ H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple
Fragmentation of alkanes and aliphatic carbonyl compounds including Mclafferty rearrangement. 4.1.2 Spectral characteristics of following classes of organic compounds, including benzene and monosubstituted benzenes with respect to UV-VIS, IR, ¹ H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple
compounds including Mclafferty rearrangement. 4.1.2 Spectral characteristics of following classes of organic compounds, including benzene and monosubstituted benzenes with respect to UV-VIS, IR, ¹ H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple
4.1.2 Spectral characteristics of following classes of organic compounds, including benzene and monosubstituted benzenes with respect to UV-VIS, IR, ¹ H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple
classes of organic compounds, including benzene and monosubstituted benzenes with respect to UV-VIS, IR, ¹ H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple
benzene and monosubstituted benzenes with respect to UV-VIS, IR, ¹ H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple
respect to UV-VIS, IR, ¹ H NMR: (1) alkanes (2) alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple
alkenes and polyenes (3) alkynes (4) haloalkanes (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple
 (5) alcohols (6) carbonyl compounds (7) ethers (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple
 (8) carboxylic acids (9) esters (10) amines (11) amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple
amides (broad regions characteristic of different groups are expected). 4.1.3 Problems of structure elucidation of simple
groups are expected). 4.1.3 Problems of structure elucidation of simple
4.1.3 Problems of structure elucidation of simple
organic compounds using individual or
combined use of the UV-VIS, IR, ¹ H NMR and
Mass spectroscopic techniques. (index of
hydrogen deficiency expected).
4.2 Natural Products: (07L)
4.2.1 Introduction, sources, classification and
functions to the following natural products
(Structures of the compounds specified are
expected)
(a) Terpenoids: (isoprene rule). citral, α-
terpeniol, camphor and α-pinene.
(b) Alkaloids: nicotine, atropine.

	(c) Vitamins: vitamin A and vitamin C.
	(c) vitalinis. vitalinii A and vitalinii C.
	(d) Hormones: adrenaline, thyroxine.
	(e) Steroids: cholesterol, progesterone.
	4.2.2 Structure determination of natural
	products:
	(a) Ozonolysis in terpenoids: Examples
	of open chain and monocyclic
	monoterpenoids.
	(b) Hofmann exhaustive methylation and
	degradation in alkaloids: simple open
	chain and monocyclic amines.
	4.2.3 Commercial synthesis: (a) camphor from
	α-pinene (b) α- and β- ionones from citral.
	4.2.4 Introduction to primary and secondary
	metabolites and broad classification of
	natural products based on biosynthesis.
L	

Course Code: RUSCHE604
Course Title: CHEMISTRY-IV
Academic year 2022-2023

Course Outcomes:

After studying this course, the learner will be able to:			
CO 1	Outline the basic principles, instrumentation of these advanced separation		
	techniques and electroanalytical methods.		
CO 2	Assess advantages and limitations of these techniques.		
CO 3	Correlate these techniques with industrial applications.		
CO 4	Relate the applications of analytical methods in day-to-day life.		

RUSCHE604		CHEMISTRY-IV	Credits-2.5
	Unit	Unit Title	Lectures

I	Separation Techniques.	(15L)
	1.1 Gas Chromatography	(06L)
	1.1.1 Introduction, basic principles, terms	
	involved,	
	1.1.2 Rate theory and plate theory of	
	chromatography	
	1.1.3 Instrumentation, components of the	
	instruments, Types of columns, packing	
	materials.	
	1.1.4Types of detectors, TCD, FID, ECD, their	
	relative advantages and imitations	
	1.1.5 Qualitative and quantitative analysis,	.16
	1.1.6 Applications of GC	
	1.2 High Pressure Liquid Chromatography	(05L)
	1.2.1 Introduction, basic principles.	U
	1.2.2 Instrumentation and its components.	
	1.2.3 Solvent reservoirs, degassing system,	
	1.2.4 Types of pumps, pneumatic, reciprocating,	
	syringe type, their advantages and limitations,	
	1.2.5Pre-column, types of columns, packed and	
	capillary, sample injection systems	
	1.2.6 Detectors, UV-Visible, refractive index,	
	1.2.7 Applications of HPLC	
	1.3 Ion Exchange Chromatography	(04L)
	1.3.1 Introduction, types of ion exchangers,	(0 12)
	synthetic and natural, cation and anion,	
	properties of resins	
	1.3.2 Ion exchange equilibria, selectivity	
	coefficient, separation factors, factors affecting	
	separation of ions	
	1.3.3 Ion exchange capacity and its	
	determination	

	1.3.4 Applications of ion exchange	
	chromatography, preparation of demineralized	
	water, separation of amino acids, separation of	
	lanthanides, preparation of exact concentration	
	of acids or bases	
II	Electroanalytical Methods	(15L)
	2.1: Introduction and classification of	(01L)
	electroanalytical methods and specific features	
	of each of the major category.	.16
	2.2 Ion Selective Electrodes:	(04L)
	2.2.1 Ion selective and ion specific electrodes,	
	components of ion selective electrode,	
	properties of membrane in ion selective	
	electrode, classification of ion selective	
	electrodes	
	2.2.2 Solid membrane electrodes: Fluoride ion	
	selective electrode, Glass membrane electrode,	
	Glass electrode.	
	2.2.3 Liquid membrane electrode: Calcium ion	
	electrode	
	2.3 Polarography	(07L)
	2.3.1 Basic principles, polarizable and	
	nonpolarizable electrodes, supporting	
	electrolyte, its function, selection of supporting	
	electrolyte	
	2.3.2 The polarogram, terms involved, residual	
	current, limiting current, diffusion current, half	
()	wave potential.	
	2.3.3 Oxygen interference and its removal,	
₹0.	polarographic maxima and use of maxima	
	suppressors.	

determination of half wave potential and diffusion current from the polarogram 2.3.5llkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages and limitations; 2.3.7 Instrumentation, H- shaped polarographic cell , Qualitative and quantitative analysis, calibration curve method, standard addition method. 2.3.8 Applications of polarography. 2.4 Amperometric titrations 2.4.1 Basic principles: construction of the titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods 3.1.1 Potentiometric titrations 3.1.1 Potentiometric titrations 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		2.3.4 Equation of polarographic wave,	
2.3.5 llkovic equation, terms involved and their explanation 2.3.6 DME, Construction, working, advantages and limitations; 2.3.7 Instrumentation, H- shaped polarographic cell , Qualitative and quantitative analysis, calibration curve method, standard addition method. 2.3.8 Applications of polarography. 2.4 Amperometric titrations (03L) 2.4.1 Basic principles: construction of the titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellancous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		determination of half wave potential and	
explanation 2.3.6 DME, Construction, working, advantages and limitations; 2.3.7 Instrumentation, H- shaped polarographic cell , Qualitative and quantitative analysis, calibration curve method, standard addition method. 2.3.8 Applications of polarography. 2.4 Amperometric titrations (03L) 2.4.1 Basic principles: construction of the titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1.1 Potentiometric titrations (04L) 3.1.1 Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		diffusion current from the polarogram	(
2.3.6 DME, Construction, working, advantages and limitations; 2.3.7 Instrumentation, H- shaped polarographic cell , Qualitative and quantitative analysis, calibration curve method, standard addition method. 2.3.8 Applications of polarography. 2.4 Amperometric titrations (03L) 2.4.1 Basic principles: construction of the titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		2.3.5Ilkovic equation, terms involved and their	
and limitations; 2.3.7 Instrumentation, H- shaped polarographic cell , Qualitative and quantitative analysis, calibration curve method, standard addition method. 2.3.8 Applications of polarography. 2.4 Amperometric titrations (03L) 2.4.1 Basic principles: construction of the titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		explanation	100
2.3.7 Instrumentation, H- shaped polarographic cell , Qualitative and quantitative analysis, calibration curve method, standard addition method. 2.3.8 Applications of polarography. 2.4 Amperometric titrations (03L) 2.4.1 Basic principles: construction of the titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		2.3.6 DME, Construction, working, advantages	
cell , Qualitative and quantitative analysis, calibration curve method, standard addition method. 2.3.8 Applications of polarography. 2.4 Amperometric titrations (03L) 2.4.1 Basic principles: construction of the titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1.1Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		and limitations;	
calibration curve method, standard addition method. 2.3.8 Applications of polarography. 2.4 Amperometric titrations (03L) 2.4.1 Basic principles: construction of the titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		2.3.7 Instrumentation, H- shaped polarographic)
method. 2.3.8 Applications of polarography. 2.4 Amperometric titrations (03L) 2.4.1 Basic principles; construction of the titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		cell , Qualitative and quantitative analysis,	
2.3.8 Applications of polarography. 2.4 Amperometric titrations (03L) 2.4.1 Basic principles: construction of the titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		calibration curve method, standard addition	
2.4 Amperometric titrations 2.4.1 Basic principles: construction of the titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods 3.1 Potentiometric titrations 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		method.	
2.4.1 Basic principles: construction of the titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		2.3.8 Applications of polarography.	
titration curve, Different types of amperometric titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		2.4 Amperometric titrations	(03L)
titration curves, 2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		2.4.1 Basic principles: construction of the	
2.4.2 Rotating platinum electrode, construction, working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		titration curve, Different types of amperometric	
working, advantages and limitations. 2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		titration curves,	
2.4.3 Applications of amperometric titrations, 2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		2.4.2 Rotating platinum electrode, construction,	
2.4.4 Comparison of amperometry and polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		working, advantages and limitations.	
polarography III Miscellaneous Methods (15L) 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		2.4.3 Applications of amperometric titrations,	
III Miscellaneous Methods 3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		2.4.4 Comparison of amperometry and	
3.1 Potentiometric titrations (04L) 3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		polarography	
3.1.1Potentiometry and potentiometric titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in	Ш	Miscellaneous Methods	(15L)
titrations, basic principles, indicator and reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		3.1 Potentiometric titrations	(04L)
reference electrode, types of titrations and indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		3.1.1Potentiometry and potentiometric	
indicator electrodes used for each type. 3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in		titrations, basic principles, indicator and	
3.1.2 Experimental set up & procedures for the potentiometric titrations, 3.1.3 Determination of equivalence point in	~(0-)	reference electrode, types of titrations and	
potentiometric titrations, 3.1.3 Determination of equivalence point in		indicator electrodes used for each type.	
3.1.3 Determination of equivalence point in		3.1.2 Experimental set up & procedures for the	
		potentiometric titrations,	
notantian strictions was of Evry V first and	<i>y</i>	3.1.3 Determination of equivalence point in	
potentiometric titrations, use of E vs. v, first and		potentiometric titrations, use of E vs.V, first and	
second derivative plots vs. V for the		second derivative plots vs. V for the	
determination of the equivalence point.		determination of the equivalence point.	

	3.1.4 Advantages and limitations.	
	3.2 Biamperometric titrations,	(02L)
	3.2.1 Basic principles, experimental set up,	
	3.2.2 Biamperometric titration curves,	
	determination of the equivalence point	. \ (
	3.2.3 Determination of water content by Karl	
	Fischer method.	100
	3.3 Gel electrophoresis	(06L)
	3.3.1 Basic principle,	
	3.3.2 Factors affecting migration rate,	3
	supporting media, SDS page, Isoelectric	
	focussing	
	3.3.3 2D gel support, application of the sample,	
	procedure.	
	3.3.4 Separation and identification methods	
	3.3.5 Applications	
	3.4 Size exclusion Chromatography	(03L)
	3.4.1 Introduction, principles,	
	3.4.2 Operational procedures,	
	3.4.3 Applications of size exclusion	
	chromatography	
IV	Selected Industrial Applications of Analytical	(15L)
	Chemistry	
	4.1 Food analysis	(05L)
	4.1 .1 Milk powder	
	4.1.1.1 Determination of lactose	
~0.	4.1.1.2 Determination of calcium and iron	
	4.1.2 Honey	
	4.1.2.1 Total reducing sugars in honey	
	4.2 Cosmetic analysis	(02L)

4.2.1 Talcum powder	
4.2.2 Analysis of face powder	
4.3 Detergent analysis	(03L)
4.3.1 Determination of active anionic matter	
4.3.2 Determination of alkalinity	
4.3.3 Determination of oxygen releasing	
capacity.	.16
4.4 Water analysis	(03L)
4.4.1 Determination of dissolved oxygen	100
4.4.2 Determination of chemical oxygen	
demand	
4.5 Pharmaceutical Analysis	(02L)
4.5.1 Determination of drugs by non-aqueous	
titration	

Semester-VI Practicals

RUSCHEP601						Credits-3
	CHEN	MISTRY-I	FD			
	1.	To determine	ne the ener	gy of act	ivation for the	e acid catalyzed
		hydrolysis o	f methyl ac	etate.		
	2.	To determine	e the mole	cular wei	ght of high po	lymer polyvinyl
		alcohol (PV	A) by visco	sity meası	irement.	
	3.	To determin	e acidic and	l basic diss	sociation consta	ant of amino acid
	0	and hence c	alculate iso	electric po	int.	
A	4.	To determine	e the amou	unt of we	ak acid and str	rong acid in the
		given mixtu	re by condu	ctometric	titration.	
	5.	To determi	ne the solu	ability and	d solubility pi	roduct of AgCl
~(0-)		potentiomet	rically using	g chemica	l cell.	
	6.	To determi	ne Critical	Micelle	Concentration	(CMC) using
		conductome	ter.			

CHEMISTRY-II

Inorganic preparations

- 1. Mercury tetrathiocyanatoCobaltate (II) Hg[Co(SCN)4]
- 2. Magnesium oxinate[Mg(Ox)2]
- 3. Tris-acetyl acetonato iron(III) [Fe(AcAc)3]
- 4. Tetramminecopper(II) sulphate. [Cu(NH3)4]SO4.H2O

Inorganic estimations/ Analysis

- 1. Estimation of copper iodometrically using sodium thiosulphate.
- 2. Estimation of lead by complexometrically using EDTA solution.

RUSCHEP602

CHEMISTRY-III

Binary Mixture Separation & identification (Solid + Solid)

(2.0 g mixture to be given)

- 1. Minimum six mixtures to be completed by the learners.
- 2. Components of the mixture should include water soluble and water insoluble acids (carboxylic acid), water insoluble phenols (α -naphthol, β -naphthol), water insoluble bases (nitroanilines), water soluble (urea and thiourea) and water insoluble neutrals (Aromatic hydrocarbons, m-dinitrobenzene, anilides, amides)
- 3. A sample of binary mixture to be given (<1.0 gram) to the learners for detection of chemical type of mixture. After correct determination of the chemical type, the fixing reagent should be decided by the learners for separation.
- 4. Follow separation scheme with the bulk sample of the binary mixture.
- 5. After separation of the components into independent components A and B,
- a. One component (decided by the examiner) is to be analyzed and identified by chemical method with melting point and also by IR spectroscopy. (This component is not to be weighed).
- b. The other component is to be purified, dried, weighed and melting point is to be determined.

CHEMISTRY-IV:

1. Estimation of Chromium in water sample by using diphenylcarbazide spectrophotometrically.

- 2. Determination of acetic acid content in vinegar sample by using quinhydrone electrode potentiometrically.
- 3. Determination of phosphoric acid in cola sample pH metrically.
- 4. Estimation of calcium and magnesium content in Talcum powder.
- 5. Estimation of reducing sugar in honey by Wilstatter method.
- 6. Separation and estimation of Mg(II) and Zn(II) from given sample solution using an anion exchanger.

Physical Chemistry

- 1. Physical Chemistry, Ira Levine, 5th Edition, 2002 Tata McGraw Hill Publishing Co.Ltd.
- 2. The Elements of Physical Chemistry, P.W. Atkins, Oxford University Press, Oxford...
- 3. Modern Electrochemistry, J.O.M Bockris& A.K.N. Reddy, Maria Gamboa Aldeco 2nd Edition, 1st Indian reprint,2006 Springer
- 4. Physical Chemistry, G.M. Barrow, 6th Edition, Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- 5. The Elements of Physical Chemistry, P.W. Atkins, 2nd Edition, Oxford UniversityPress Oxford
- 6. Physical Chemistry, G.K. Vemullapallie, 1997, Prentice Hall of India, Pvt.Ltd. New Delhi.

Inorganic Chemistry

- 1. D. Banerjea, Coordination chemistry, Tata McGraw Hill, New Delhi, (1993).
- 2. D. F. Shriver and P. W. Atkins, *Inorganic chemistry*, 3rd Ed., Oxford University Press, (1999).
- 3. N. N. Greenwood and E. Earnshaw, *Chemistry of elements*, Pergamon Press, Singapore, (1989).
- 4. W. L. Jolly, Modern inorganic chemistry, 2nd Ed. McGraw Hill Book Co., (1991).
- 5. B. E. Douglas and H. McDaniel, *Concepts and models in inorganic chemistry*, 3rd Ed., John Wiley & Sons, Inc., New York, (1994).
- 6. G. N. Mukherjee and A. Das, *Elements of bioinorganic chemistry*, Dhuri and Sons, Calcutta, (1988).
- 7. R. W. Hay, *Bioinorganic chemistry*, Ellis Harwood, England, (1984).
- 8. R. C. Mehrotra and A. Singh, *Organometallic chemistry: A unified approach*, Wiley Eastern, New Delhi, (1991).

- 9. Practical Inorganic Chemistry by G. Marr and B. W. Rockett, VanNostrand Reinhold Company London1972. P 34. (For synthesis of iron ethylenediamine sulphate)
- 10. Microscale Inorganic Chemistry by Z. Szafran, Ronald M. Pike and Mono M. Singh. Pub.John Wiley and Sons1991.p.218.(For preparation of CuCl₂.2DMSO.

Organic Chemistry

- 1. Organic Chemistry, Francis A Carey, Pearson Education, 6th Edition, Special Indian Edition 2008.
- 2. Organic Chemistry, R.T. Morrison and R.N. Boyd, 6th Edition, Pearson Edition.
- 3. Organic Chemistry, T.W.G. Solomon and C.B. Fryhle, 8th Edition, John Wiley & Sons, 2004.
- 4. Organic Chemistry Baula Y. Bruice, Pearson Edition, 2008.
- 5. Organic Chemistry, J.G. Smith, 2nd Editionm Special Indian Edition, Tata. McGraw Hill.
- 6. Stereochemistry, P.S. Kalsi, New Age International Ltd. 4th Edition, 2006
- 7. Organic Spectroscopy by Jag Mohan
- 8. Furniss, B. S.; Hannaford, A. J.; Rogers, V.; Smith, P. W. G.; Tatchell, A. R. Vogel's Textbook of Practical Organic Chemistry, ELBS.

Analytical Chemistry

- 1. D. Harvey, Modern Analytical Chemistry, The McGraw-Hill Pub. 1st Edition (2000)
- 2. H.S. Ray, R Sridhar and K.P. Abraham, Extraction of Nonferrous Metals, AffiliatedEast-West Press Pvt. Ltd. New Delhi (1985) reprint 2007.
- 3. G.H. Jeffery, J. Bassett, J. Mendham and R.C. Denney, Vogel's Textbook of Qunatitative Chemical Analysis, Fifth edition, ELBS Publication (1996)
- 4. D.A. Skoog D.M. West and F.J. Holler, Fundametals of Analytical Chemistry, 7thEdition (printed in India in 2001) ISBN Publication.
- 5. Analytical Chemistry, J.G. Dick, 1973 Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- 6. Quantitative analysis, Dey& Underwood, Prentice Hall of India, Pvt. Ltd. New Delhi
- 7. Fundamentals of Analytical Chemistry, Skoog 8th edition, Saunders college publishing.

Modality of Assessment

Theory Examination Pattern:

A) Internal Assessment - 40% of total marks:

(40 marks)

Sr No	Evaluation type	Marks
1	One Assignment	10
2	One class Test (multiple choice questions / objective)	20
3	Active participation in routine class instructional deliveries (seminars//presentation)	05
4	Overall conduct, participation in co-curricular activities of the department.	05

B) External examination – 60 % Semester End Theory Assessment - 60%

60 marks

These examinations shall be of **two hours** duration.

There shall be Four questions each of 15 marks. On each unit there will be one question.

All questions shall be compulsory with internal choice within the questions.

Theory question paper pattern is as follows:-

Questions	Options	Marks	Questions on
Q.1)A)	Any 3 out of 5	12	Unit I
Q.1)B)	Any 1 out of 2	03	- Omit i
Q.2)A)	Any 3 out of 5	12	- Unit II
Q.2)B)	Any 1 out of 2	03	- Omit II
Q.3)A)	Any 3 out of 5	12	- Unit III
Q.3)B)	Any 1 out of 2	03	
Q.4)A)	Any 3 out of 5	12	Unit IV
Q.4)B)	Any 1 out of 2	03	

Practical Examination Pattern:

(A)Internal Examin		TTED (04	Driggs	TED (00	
	RUSC	HEP601	RUSCHEP602		
	Paper I	Paper II	Paper III	Paper IV	
Journal	05	05	05	05	
Tests	10	10	10	10	
Active Participation	05	05	05	05	
Total	20	20	20	20	
(B) External (Seme	ster end practi	cal examination):-	•	
Laboratory work	25	25	25	25	
Viva	05	05	05	05	
Total	30	30	30	30	
Grand Total	1	00	10	00	

PRACTICAL JOURNAL

The students are required to present a duly certified journal for appearing at the practical examination, failing which they will not be allowed to appear for the examination.

In case of loss of Journal, Certificate from Head/Co-ordinator should be submitted, failing which the student will not be allowed to appear for the practical examination.

Overall Examination and Marks Distribution Pattern

Course 601	602	Grand Total
------------	-----	----------------

	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical	20	30	50	20	30	50	100
					•		
Course	603			604			
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practical	20	30	50	20	30	50	100
	1			1	(Total Mar	ks : 600)